基于深度学习与属性学习相结合的行人再识别
作者:
作者单位:

作者简介:

许方洁(1991-),女,硕士研究生,研究方向:机器学习及模式识别等,E-mail:daisyxfj@163.com;成科扬(1982-),男,副教授,硕士生导师,研究方向:计算机应用技术和模式识别等;张建明(1964-),男,教授,硕士生导师,研究方向:图象处理与模式识别、系统仿真、虚拟现实和计算机图形学等

通讯作者:

基金项目:

江苏省普通高校研究生科研创新计划(KYLX15_1080)资助项目;国家自然科学基金(61602215)资助项目;江苏省自然科学基金(BK20150527)资助项目;镇江市科技计划(SH2014017)资助项目;江苏大学高级人才科研启动基金(15JDG180)资助项目。


Pedestrian Re-identification Based on Deep Learning and Attributes Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现实情况中缺少大量有标签数据,导致有监督的行人再识别模型训练受到影响。此外,低层特征的缺乏语义特性限制了行人再识别在行人检索、罪犯追踪等中的应用。本文提出了一种基于深度学习与属性学习相结合的行人再识别方法,利用深度学习的无监督模型提取行人图像的本质特征,并引入"属性"概念增强特征的语义表达能力。首先采用卷积自动编码器进行无监督的特征提取,提取的特征然后交由多个属性分类器进行属性分类,并结合统计获得的属性类别映射关系表计算最终类别判定,最后在VIPeR和i-LIDS标准数据集上进行了测试,并与基于优化属性的行人再识别方法(Optimized attribute based re-identification,OAR)、显著性检测对应法(Salience detection correspondence,SDC)等进行了比较,结果表明本方法能够赋予行人再识别较好的语义性能,并在一定程度上提高了识别的准确率,同时获得了较好的零训练样本识别效果。

    Abstract:

    The lack of much labeled data in the real world affects the training of supervised model for pedestrian re-identification. Besides, applications of pedestrian re-identification in pedestrian retrieving and criminal tracking are limited because of the lack of semantic representation. This paper presents a pedestrian re-identification method based on the combination of deep learning and attributes learning, which extracts essential features with unsupervised deep learning model and enhances the semantic representation of features with ‘attributes’. Firstly, a convolutional auto-encoder (CAE) is used to extract features of unlabeled pedestrian images, and the extracted features are then input into several attribute classifiers to judge whether the pedestrian owns the attributes. Lastly, with a table of ‘attributes-classes mapping relations’, we can get the final dassification result. Tests of the proposed algorithm and comparisons with other algorithms on the VIPeR and i-LIDS datasets are shown, and results prove that our algorithm indeed strengthens the semantic representation and improves the accuracy of pedestrian re-identification, achieving good ‘zero-shot’ re-identification performance as well.

    参考文献
    相似文献
    引证文献
引用本文

许方洁, 成科扬, 张建明.基于深度学习与属性学习相结合的行人再识别[J].数据采集与处理,2018,33(4):751-757

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2016-09-18
  • 最后修改日期:2016-10-28
  • 录用日期:
  • 在线发布日期: 2018-09-08