融入差异性的帕累托集成剪枝方法
作者:
作者单位:

作者简介:

魏苗苗(1991-),女,硕士研究生,研究方向:集成学习,E-mail:wmm7374@163.com;杭杰(1994-),男,硕士研究生,研究方向:集成学习,E-mail:1216043136@njupt.edu.cn。

通讯作者:

基金项目:

江苏省自然科学基金(BK20131378,BK20140885)资助项目;广西高校云计算与复杂系统重点实验室(15206)资助项目。


Pareto Ensemble Pruning With Diversity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    相比于集成学习,集成剪枝方法是在多个分类器中搜索最优子集从而改善分类器的泛化性能,简化集成过程。帕累托集成剪枝方法同时考虑了分类器的精准度及集成规模两个方面,并将二者均作为优化的目标。然而帕累托集成剪枝算法只考虑了基分类器的精准度与集成规模,忽视了分类器之间的差异性,从而导致了分类器之间的相似度比较大。本文提出了融入差异性的帕累托集成剪枝算法,该算法将分类器的差异性与精准度综合为第1个优化目标,将集成规模作为第2个优化目标,从而实现多目标优化。实验表明,当该改进的集成剪枝算法与帕累托集成剪枝算法在集成规模相当的前提下,由于差异性的融入该改进算法能够获得较好的性能。

    Abstract:

    Compared with ensemble learning, the ensemble pruning is used to search for the optimal subset among multiple classifiers to improve the generalization performance of the classifier and simplify the ensemble process. In order to improve generalization performance and simplify ensemble process, ensemble pruning is used to search an optimal subset in multiple classifiers. It has attracted widespread concern, and it is significant to reduce the complex of ensemble learning. In recent years, researchers have proposed Pareto ensemble pruning (PEP) which considers both the classification performance and the number of base learners, and solves the two goals as the bi-objective optimization. However, Pareto ensemble pruning method ignores the diversity among classifiers, which would cause relatively large similarity among classifiers. In the paper, we proposed Pareto ensemble pruning with diversity (PEPD), in which diversity among classifiers is introduced into Pareto ensemble pruning method. The first goal of the proposed method is to maximize classifiers' diversity and their classification performance. The second goal is to minimize the number of base learners. The experimental results show that the PEPD method can obtain higher performance in most cases. And the enhancement is due to diversity's combination when PEPD and PEP have the similarity number of base learners. Experiments show that the PEPD method can obtain higher performance in most cases due to diversity's combination, when PEPD and PEP have the similar number of base learners.

    参考文献
    相似文献
    引证文献
引用本文

魏苗苗, 杭杰.融入差异性的帕累托集成剪枝方法[J].数据采集与处理,2018,33(3):555-563

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2016-09-26
  • 最后修改日期:2016-10-14
  • 录用日期:
  • 在线发布日期: 2018-07-09