基于多核最小二乘支持向量回归的TDOA-DOA映射方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


TDOA-DOA Mapping Using Multi-Kernel Least-Squares Support Vector Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于到达时间差(Time difference of arrival, TDOA)估计的方法是声源波达方向(Direction of arrival, DOA)估计中的一类重要方法。其中由TDOA到DOA的映射是该类方法的关键步骤。本文提出了一种基于多核聚类最小二乘支持向量回归(Least-squares support vector regression, LS-SVR)的TDOA-DOA映射方法,并且分析了其稀疏化处理后的性能。为了提高混响噪声环境下的TDOA-DOA映射性能,本文还给出了一种基于归一化中值滤波的TDOA估计离群值消除方法。仿真结果表明,本文提出的方法要优于现有的最小二乘方法以及单核LS-SVR方法。

    Abstract:

    In sound source direction of arrival (DOA) estimation, one of the typical methods is based on the time difference of arrival (TDOA). For the TDOA-based sound source DOA estimation, the TDOA-DOA mapping is a crucial step. Here, we propose a TDOA-DOA mapping approach based on the multi-kernel least-squares support vector regression (LS-SVR), and also analyze its performance with sparsification. In addition, we present an outlier detection method based on the normalized median filtering to post-process the TDOA estimation for improving the performance of TDOA-DOA mapping in noisy reverberant environments. Simulation results show that the proposed method is superior to its counterparts, such as LS and single-kernel LS-SVR methods.

    参考文献
    相似文献
    引证文献
引用本文

张峰 陈华伟 李妍文.基于多核最小二乘支持向量回归的TDOA-DOA映射方法[J].数据采集与处理,2017,32(3):540-549

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-06-28