基于演化计算的异常轨迹并行检测算法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Parallel Algorithm for Detecting Trajectory Outliers Based on Evolutionary Computation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    异常轨迹检测是轨迹数据挖掘研究领域的一个重要研究内容,基于演化计算的异常轨迹检测算法(Top-k evolving trajectory outlier detection, TOP-EYE)是一种有效的异常轨迹检测算法。不同于其他算法采用的轨迹距离计算方法,TOP-EYE算法 从轨迹的方向和密度角度出发,采用演化计算的方式检测异常。为了提高TOP-EYE算法对海量轨迹数据集异常检测的效率,本文在其基础上提出了基于MapReduce的异常轨迹检测并行算法(Parallel detecting abnormal trajectory based on TOP-EYE, PDAT-TOP ),利用MapReduce并行计算的优势提高了异常轨迹检测的效率。将算法PDA T-TOP在Hadoop平台上加以实现,实验结果表明,算法PDAT-TOP能够有效地检测异常轨迹,并且具有较高的可扩展性和加速比。

    Abstract:

    Trajectory outlier detection is significantly important in the field of trajectory data mining. Algorithm TOP-EYE (Top-k evolving trajectory outlier detection) is an efficient algorithm for detecting abnormal trajectory. From the point of view of the direction and density, algorithm TOP-EYE takes use of the method of evolutionary computation to detect anomalies, which is different from other algorithms. To improve the efficiency of mining trajectory outliers from massive trajectory datasets, the parallel algorithm for detecting trajectory outliers based on evolutionary computation, called PDAT-TOP (Parallel detecting abnormal trajectory based on TOP-EYE), is proposed. The algorithm takes advantages of parallel computation to improve the efficiency of detecting abnormal trajectory. Algorithm PDAT-TOP is implemented on Hadoop. Experimental results demonstrate that the algorithm can effectively detect abnormal trajectory, and it has high scalability and better speedup.

    参考文献
    相似文献
    引证文献
引用本文

唐梦梦 吉根林 赵斌.基于演化计算的异常轨迹并行检测算法[J].数据采集与处理,2017,32(2):382-389

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-04-27