基于得分归一化和系统融合的语音关键词检测方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Keyword Spotting based on Score Normalization and System Combination
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了有效利用不同关键词检测系统的互补性,解决不同系统检测结果置信度得分不在同一范围的问题,提出了一种基于得分规整和系统融合的语音关键词检测方法。首先,为了克服连续语音识别系统中因剪枝错误而引起的关键词丢失问题,应用了关键词相关的软Beam宽度剪枝策略裁剪词图;其次,在系统融合前采用得分归一化方法,使得不同系统关键词检测结果置信度得分在同一范围;最后,通过系统融合处理将不同系统的关键词输出进行整合,得到最终的关键词检测结果。实验结果表明,经过得分归一化处理后,关键词检测性能的实际查询词权重代价(Actual term-weighted value, ATWV)平均相对提升30%;系统融合后关键词的检测性能,相比于得分归一化处理后的最佳单一系统,得到了10%的提升。

    Abstract:

    To effectively use the complementarity of different keyword spotting systems and solve the problem that the confidence scores from several different subsystems is not in the same range, a keyword spotting system based on score normalization and system combination is proposed. Firstly, to avoid keyword missing due to pruning errors in a large vocabulary recognition system, the keyword soft Beam pruning method is presented. Secondly, score normalization is needed to transform these confidence scores into a common domain, prior to combining them. Finally, after score normalization,the outputs are combined from different subsystems. Results show that score normalization methodology improves keyword search performance by 30% in average. Experiment also show that combining the outputs of diverse systems, system perform is 10% better than the best normalized KWS system.

    参考文献
    相似文献
    引证文献
引用本文

李鹏 屈丹.基于得分归一化和系统融合的语音关键词检测方法[J].数据采集与处理,2017,32(2):346-353

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-04-27