广义概率Tsallis熵的快速多阈值图像分割
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Fast Multilevel Thresholding for Image Segmentation Based on Generalized Probability Tsalli s Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对传统的熵多阈值法存在的计算复杂度高和分割不准确等 问题,提出了一种基于广义概率Tsallis熵的快速多阈值图像分割方法。首先,对传统的灰 度概率进行修改得到广义概率以构建广义概率Tsallis熵。然后,通过直方图均值自动确定Tsallis熵参数以解决参数不易选择 的问题。随后,将GPTE正确拓展到多阈值分割方法中使得分割更准确。最后,将差分进化(D ifferential evolution, DE)算法与递推算法有机结合应用于GPTE多阈值法中以解决计算复 杂度高的问题。[JP2]图像分割实验结果表明,与基于传统的熵多阈值法相比,本文提出的方法不 仅分割更准确,自适应性更强,而且运行速度更快。

    Abstract:

    To overcome the shortcomings of entropy bas ed multilevel segmentation methods, such as high computational complexity and po or segmentation performance, a fast multilevel thresholding for image segmentation method based o n generalized probability Tsallis entropy is proposed. First the t raditional gray probability is modified into generalized probability to form gene ralized probability Tsallis entropy (GPTE). Then the parameters of GPTE are cho sen adaptively through the image histogram average value. Thirdly, a multilevel t hresholding method based on GPTE is formulated to get more effective segmentation. Finally the differential evolution(DE) and the recursive algorithm are combined and introduced into the multilevel thresholding method to find the best threshold vector quickly. Experi mental results of image segmentation show that the propos method can obtain bett er segmentation results and adaptability with less computation time compared with the tra ditional entropy based multilevel segmentation methods.

    参考文献
    相似文献
    引证文献
引用本文

张新明;张贝;涂强.广义概率Tsallis熵的快速多阈值图像分割[J].数据采集与处理,2016,31(3):502-511

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-06-24