基于局部自适应核回归的仪表定位方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Instrument Localization Method Based on Locally Adaptive Regression Kernels
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    计算机视觉技术不断发展,利用巡检机器人对钻井平台、水电工程等复 杂工业环境下的各种仪表设备进行定期检查成为可能,然而这些功能的实现依赖仪表的精准 定位。本文提出一种基于局部自适应核回归(Locally adaptive regression kernels,LARK)的方法进行仪表的快速定位。LARK算 法无需训练,可以快速搜索感兴趣的视觉对象,并且不需要进行过多的预处理,提高了 定位的效率。通过提取查询图像的显著特征,在目标图像中寻找所有可能相似的 对象,然后用非极大值抑制法保留最强相似点,实现目标对象的定位。实验选用从不同角度 拍摄的具有不同放缩比例的仪表图像作为实验所需数据。实验结果表明,该算法定位准确度 高,可以很好地满足工业环境下仪表的定位要求。

    Abstract:

    With the development of computer vision technology, it is possible to inspect the inst ruments regularly through the inspection robot in some complex industrial environm ents. However, the realization of the inspection depends on the precise localization of instruments . Here, a method based on locally adaptive regression kernels (LARK) is introduced to achieve quick localiza tion of instruments. LARK can quickly search the visual object without training or too much preprocessing, which greatly improve the efficiency of the instruments localization. Firstly, the salient features are extracted and analogous objects are searched and with the target image to find al l possible similar matches. Then nonmaxima suppression is employed to localize th e target object. The instruments images with different scaling taken from different angles are used in experiments. Experimental results suggest that the a lgorithm is accurate and can meet the requirements of instrument localiza tion in industrial environments.

    参考文献
    相似文献
    引证文献
引用本文

杜烨宇;陶大鹏;梁虹;林旭.基于局部自适应核回归的仪表定位方法[J].数据采集与处理,2016,31(3):490-501

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-06-24