基于FVQMM的说话人识别方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Speaker Recognition Based on FVQMM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了进一步提高基于高斯混合模型的与文本无关说话人识别系统的识别性能,本文针对高斯混合模型在建模时需要较多的训练数据的缺陷,提 出了一种新的应用于小样本说话人识别系统的与文本无关说话人识别方法,该方法综合考虑了模糊集理论、矢量量化和高斯混合模型的优点,通过用模糊矢量量化误差尺度取代传统高 斯混合模型的输出概率函数,减少了建模时对训练数据量的要求,提高了模型精度和识别速 度。同时由于模糊集理论起到了“数据整形”的作用,所以增强了目标说话人数据的相似性。实验结果表明该方法针对小样本数据的说话人识别系统,识别性能优于传统的基于高斯混合模型的说话人识别系统。

    Abstract:

    In order to further improve the performance of speaker recognition system based on the GMM independent of text, a new speaker recognition method is applied to the speaker recognition system with small samples and text independent. Aiming at the large quantity demanded of training data during the modeling of the GMM, the advantages of the fuzzy set theory, vector quantization and the GMM are considered. Then through replacing the output probability function in the traditional GMM with the error scale of the fuzzy VQ, the requirements of the training data amount are reduced while improving the accuracy and recognition speed of the model. Meanwhile as a result of the fuzzy set theory playing a role of "plastic date", the similarity in the data of the target speakers is enhanced. Experimental results exhibit that the speaker recognition system of the method for the small sample data, achieves a superior recognition performance than the traditional speaker recognition system based on the GMM.

    参考文献
    相似文献
    引证文献
引用本文

杨彦 赵力.基于FVQMM的说话人识别方法[J].数据采集与处理,2015,30(6):1233-1239

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-12-24