基于激光点云数据的植物器官多维特征分割方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Multi Dimension Feature Segmentation Method of Folia ge Organs Based on Laser Point Cloud Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    地面三维激光点云数据的植物器官分割,是林业信息化测 量中的基础性工作之一。本文在点云数据颜色相近、结构复杂的情况下,首先提出了一种新 的局部切平面分布特征,并构造了融合原始扫描数据、散点空间分布特征、法向分布特征的 多维融合特征,能够更为有效地表征不同类别的植物器官。其次在分类器选择上,采用标准 SVM,PSVM,GEPSVM三种分类器作为对比,后续使用图割理论进行再分类,加强分类效果。 根据多种比较实验表明,本文提出的多特征融合分割方法能有效对植物器官的点云数据进行 分类,其识别率可达到98%以上。

    Abstract:

    The segmentation of foliage organs from 3D point clouds is an elemental work of forestry informatization measurement. However, the foliage point cloud data has a similar color, and the point construction is complex which ca n not be expressed easily. Therefore, a novel feature called local tangent p lane distribution is proposed, and fused with original data, scatter spatial distribution and n ormal distribution to construct a multi-dimension feature, which can character i ze different foliage organs more effectively. Then three kinds of classi fiers, including standard SVM, PSVM, GEPSVM, are used as a compa rison. And then the graph cut is also utilized for a re classification at subsequent process i ng to improve the classification performance. A variety of comparat ive experimental results show that the proposed mutli dimension feature seg mentation method can effectively classify the foliage organs from point cloud d ata. The recognition rate can reach 98%.

    参考文献
    相似文献
    引证文献
引用本文

喻垚慎 云挺 杨绪兵.基于激光点云数据的植物器官多维特征分割方法[J].数据采集与处理,2015,30(5):1054-1061

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-29