基于边缘邻域的乳腺肿块特征提取算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Mammographic Mass Feature Extraction Algorithm Based on Edge of Neighborhood
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    乳腺癌是一种严重威胁人类生命健康的疾病。只有早发现和早治疗才不会错过治疗的最佳时机。乳腺肿块是乳腺癌最主要、最常见的病灶特征,研究乳腺图像中肿块的特征提取,有利于辅助医生诊断,提高医生阅片的效率和正确率。本文针对以往的特征提取方法没有考虑图像的空间信息,造成分类准确率不高的问题,提出一种基于边缘邻域的特征提取算法,使图像特征包含肿块边缘邻域空间信息,其基本思想结合了主动轮廓模型和词袋模型,利用参数控制并确定边缘邻域,对邻域内的特征进行组合或者加权。在保证分类器模型不变的情况下,通过与以往的特征提取算法相比,验证了本算法在分类准确率上优于其他特征提取算法。

    Abstract:

    Breast cancer is one of the most serious diseases greatly threatening human′s health. A patient will not miss the best time for treatment only with early detection and early diagnosis. Mass is the most important and common lesion of breast, so breast mass feature extraction is helpful to improve the efficiency and accuracy of diagnosis. The past algorithms do not consider spatial information of〖JP+2〗 mass images, resulting in low classification accuracy. Aiming at this problem, a new breast mass feature extraction algorithm is proposed based on the edge of neighborhood. It combines the Chan Vese active contour model with the bag of words. The adaptive parameters regulation methods are designed to control edges of mass images. The final representation can be obtained by combining or weighting those features in the neighborhood. Experimental results show that the proposed methods can achieve a better classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

叶鑫晶 李洁 王颖 高新波.基于边缘邻域的乳腺肿块特征提取算法[J].数据采集与处理,2015,30(5):993-1002

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-29