基于概率分布的符号熵在心音分析中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Application of Symbol Entropy Based on Probability Distribution to Heart Sound Ana lysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    心音信号是一种重要的人体生理信号,蕴含大量生理、病理信息。根 据心音的特性提出了一种基于概率分布的符号熵算法,该算法突破传统均匀符号化的线性约 束,一方面在第一心音幅值分布密集区域分配较多的符号,在稀疏区域分配较少的符号,减 小数据冗余;另一方面在符号化过程中采用自适应方法决定符号集的大小,使得符号熵对心 音数据的变化更加敏感,能够快速、灵敏捕捉心音信号中的非线性异常状态。由此不但可消 除非平稳突变干扰和序列概率分布对熵值的影响,还能够自适应符号化。仿真实验结果表明 ,该 算法具有显著的可行性和有效性,并且为心衰的无损快速诊断提供了一种新的思路。

    Abstract:

    Heart sound is an importa nt physiological signal, and it contains a large number of physiological and pat hological information. According to the characteristics of heart sound, the symb ol entropy based on probability distribution is proposed. The algorithm makes a breakthrough at linear constraints. On the one hand, it distributes more symbols for the region where the amplitude distribution of the first heart is dense and distributes relatively less symbols for the sparse region, so as to achieve the reduction of redundancy of data; On the other hand, it uses an adaptive method t o determine the size of the symbol set. Then the symbol entropy becomes more sen sitive to the changes of the heart sound signal and can rapidly capture the no nlinear abnormal state of heart signal. Thus the algorithm can make little or no impact of the non-stationary mutation interference and the sequence probabilit y distribution on the entropy. Simulation results show that the algorithm not onl y has significant feasibility and effectiveness but also provides a new way for the rapid diagnosis of heart failure.

    参考文献
    相似文献
    引证文献
引用本文

成谢锋 于淼 姬汉贵 张学军 黄丽亚 孙科学.基于概率分布的符号熵在心音分析中的应用[J].数据采集与处理,2015,30(5):948-955

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-29