低复杂度递推信道估计联合均衡算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Low Complexity Jointed Iterative Domain Channel Estimation and Equalization Algo rithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    精确的信道状态信息对单载波频域均衡(Sin gle carrier frequency domain equalization, SC FDE)非常重要,本文基于高斯消息传 递 (Gaussian message passing,GMP)提出了一种递推最小二乘(Least squares, LS)信道估计 算法。借助于因子图,根据广义分配率思想,将估计函数分为多个局部函数,每个局部函数 做多利处理,然后通过定义辅助变量使其成递推关系。根据turbo原理,迭代交换软信息, 使得估计、均衡及译码联合进行。在此基础上 ,分析并推导出无偏简化方法,然后借助于快速傅里叶变换,使得算法复杂度随观察向量长 度的增加呈对数上升。仿真表明该简化算法具有较好的信道估计性能和误码率特性的同时, 显著降低了计算量。

    Abstract:

    Since accurate channel state information plays an important role in single carri er frequency domain equalization (SC FDE), a frequency domain state space appr oach to the least squares (LS) estimation is proposed with the aid of Gaussian m essage passing. Based on the generalized distribution law, the likelihood functi on is divided into several blocks in Forney style factor graphs (FFG), and then a recursive algorithm is developed by defining an auxiliary matrix. Through exc hanging soft information on code bits, channel estimation can be performed joint ly with frequency equalization on the basis of turbo principle. Due to the speci al forms of the state transition matrix, an unbiased recursive estimators is obt ained by properly forcing a covariance matrix in the recursive algorithm to be d iagonal. The complexity of the proposed approach avoids matrix inversion and gro ws logarithmically with the length of the observation vector. Simulation results show that the new algorithm can achieve good performance with low computational complexity.

    参考文献
    相似文献
    引证文献
引用本文

戚业龙 杨育红 朱义君.低复杂度递推信道估计联合均衡算法[J].数据采集与处理,2015,30(4):902-908

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-12