基于FFT的子孔径MUSIC波达方向估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Sub aperture MUSIC for DOA Estimation Based on FFT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对现 有的很多波达方向估计算法涉及到数据协方差矩阵的估计及其特征分解,甚至是求逆,导致 运算复杂度高的问题,提出了基于快速傅里叶变换的子孔径MUSIC波达方向估计算法 。首先将等距线阵的接收数据矢量均匀划分为4个子矢量,然后对各个子矢量分别求FFT。将 FFT的结果相干积累,并找到最大峰值点。最后,利用子矢量FFT的结果中与最大峰值点对应 的数据构造新的降维矢量,借助MUSIC算法进行波达方向估计。该方法避免了直接接收数据 的协方差矩阵估计和特征分解,有效地降低了运算量和计算复杂度,在阵元数和快拍数都较 多的情况下优越性尤为明显。计算机仿真验证了所提方法的有效性和优越性。

    Abstract:

    The most a vailable direction of arrival (DOA) estimation algorithms require covariance mat rix estimation and eigendecomposition, or even its inversion, thus increasing the computational complexity. Here a novel sub aperture multiple sigal classification (MUSIC) algorithm f or DOA estimation based on fast Fourier transform (FFT) is proposed. Firstly, ea ch received data vector of uniform linear array (ULA) is portioned into four sub vectors. Then FFT is applied to each sub vector to achieve the coherent i n tegration. By utilizing the data corresponding to the peaks of coherent integrat ion in each sub vector, a reduced dimensional data vector is constructed for D OA estimation in terms of MUSIC. Since the full dimensional covariance matrix e stimation and eigendecomposition are avoided, the computational complexity is re latively low. Numerical examples are provided to verify the effectiveness and su periority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

刘晓莉 孙闽红.基于FFT的子孔径MUSIC波达方向估计[J].数据采集与处理,2015,30(4):875-880

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-12