基于特征分组与特征值最优化的距离度量学习方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Distance Metric Learning Based on Feature Grouping and Eigenvalue Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    主流的距离度量学习方法都需要求解半正定规划(Semi definite programming, SDP )问题,而其中每次循环迭代中的矩阵完全 特征分解运算使得现有方法计算复杂度很高,实用性不强,难以应用在大规模数据环境。 本文提出了一种基于特征分组与特征值最优化的距离度量学习方法。引入特征分 组算法,根据特征各维数之间相关性对图像底层特征进行分组。在一定的约束条件下 ,将求解SDP问题转化为特征值最优化问题,在每次循 环迭代中只需计算矩阵最大特征值对应的特征向量。实验结果表明该方法能有效地降低计算 复杂度,减少度量矩阵的学习时间,并且能取得较好的分类结果。

    Abstract:

    The current mainstream distance metric learning approaches that all need to so lve the positive semi definite programming problem (SDP) will lead to high compu tational complexity, and they are thus difficult to be applied to large scale dat asets well because of fully matrix characteristics decomposition operational in each loop iteration. A distance metric learning method based on fe ature grouping and eigenvalue optimization is proposed considering the above pro blems. Firstly, a feature grouping algorithm is introduced to segment i mage features into several groups according to the correlations between each dim ension of characteristics. Then, the SDP problem can be covered to eigenvalue optimization issue under some certain constraints. Therefore, only the maximum eigenvalues of matrix is needed in every loop iteration. Experiment results indi cate that the computational complexity and the learning time of metric matrix ar e reduced effectively. Besides, the classification results are improved compared with the traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

赵永威 张蕾 李弼程 王挺进 吕清秀.基于特征分组与特征值最优化的距离度量学习方法[J].数据采集与处理,2015,30(4):830-838

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-12