面向频谱大数据处理的机器学习方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Machine Learning Methods for Big Spectrum Data Processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着移动互联网与物联网的迅猛发展,个人无线设备的数 量呈现指数级增长,随之产生的海量频谱数据与日俱增,频谱大数据的存在已成事实。同时 ,频谱赤字也日益严峻。为提高频谱利用率,有效的频谱大数据处理显得十分重要。本文从 无线通信的角度,首先给出了频谱大数据的定义并分析了它的基本特征;然后总结了一些 对于频谱大数据分析与利用颇具前景的机器学习方法,如分布式和并行式学习、极速学习、 核学习、深度学习、强化学习、博弈学习和迁移学习;最后给出了几个开放性话题和研究 趋势。

    Abstract:

    With the rapid development of the mobile Internet a nd the Internet of Things, the number of personal wireless devices has grown exp o nentially, result ing in the increase of massive spectrum data. Therefore, the bi g spectrum data are literally formed. Meanwhile, the spect rum deficit is also increasingly precarious. Effective big spectrum data process ing is significant in improving the spectrum utilization . Firstly, fr om a perspective of wireless communication, a definition of big spectrum data is presented and its characteristics are also analyzed. Th en, p romising machine learning methods to analyze and utilize the big spectrum data are summarized, such as, the distributed and parallel learning, extreme lea rning machine, kernel b a sed learning, deep learning, reinforcement learning, game learning, and transfer learning. Finally, several open issues and research trends are addressed.

    参考文献
    相似文献
    引证文献
引用本文

吴启晖 邱俊飞 丁国如.面向频谱大数据处理的机器学习方法[J].数据采集与处理,2015,30(4):703-713

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-10-12