摘要:研究将深度神经网络有效地应用到维吾尔语大词汇量连续语音识别声学建模中的两种方法:深度神经网络与隐马尔可夫模型组成混合架构模型(Deep neural network hidden Markov model, DNN-HMM),代替高斯混合模型进行状态输出概率的计算;深度神经网络作为前端的声学特征提取器提取瓶颈特征(Bottleneck features, BN),为传统的GMM-HMM(Gaussian mixture model-HMM)声学建模架构提供更有效的声学特征(BN-GMM-HMM)。实验结果表明,DNN-HMM模型和BN- GMM-HMM模型比GMM-HMM基线模型词错误率分别降低了8.84%和5.86%,两种方法都取得了较大的性能提升。