深度神经网络在维吾尔语大词汇量连续语音识别中的应用
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Deep Neural Network based Uyghur Large Vocabulary Continuous Speech Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    研究将深度神经网络有效地应用到维吾尔语大词汇量连续语音识别声学建模中的两种方法:深度神经网络与隐马尔可夫模型组成混合架构模型(Deep neural network hidden Markov model, DNN-HMM),代替高斯混合模型进行状态输出概率的计算;深度神经网络作为前端的声学特征提取器提取瓶颈特征(Bottleneck features, BN),为传统的GMM-HMM(Gaussian mixture model-HMM)声学建模架构提供更有效的声学特征(BN-GMM-HMM)。实验结果表明,DNN-HMM模型和BN- GMM-HMM模型比GMM-HMM基线模型词错误率分别降低了8.84%和5.86%,两种方法都取得了较大的性能提升。

    Abstract:

    Two methods are proposed by employing deep neural network for Uyghur large vocabulary continuous speech recognition : Hybrid architecture models are established with deep neural network (DNN) and hidden Markov model (HMM) for replacing Gaussian mixture model (GMM) in GMM-HMM to compute the state emission probabilities; DNN is facilitated as a front-end acoustic feature extractor to extract bottleneck feature(BN) to provide more effective acoustic features for the traditional GMM-HMM modeling framework(BN-GMM-HMM). The experimental results show that DNN-HMM and BN-GMM-HMM reduce word error rate(WER) by 8.84% and 5.86% compared with the GMM-HMM baseline system, which demonstrates that the two methods accomplish significant performance improvements.

    参考文献
    相似文献
    引证文献
引用本文

麦麦提艾力·吐尔逊 戴礼荣.深度神经网络在维吾尔语大词汇量连续语音识别中的应用[J].数据采集与处理,2015,30(2):365-371

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-04-23