基于互信息的教育数据矩阵加权正负关联模式发现
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Discovery of Matrix-Weighted Positive and Negative Association Patterns from Educational Data Based on Mutual Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文将互信息模型引入教育数据关联模式挖掘,提出一种基于互信息的教育数据矩阵加权正负关联模式挖掘算法,给出与其相关的定理及其证明。本文算法克服了现有挖掘算法的缺陷,考虑了教育数据项集在学生信息数据库中具有的权值,采用新的正负关联模式评价标准,挖掘出更接近实际情况的正负关联模式。通过关联模式分析,发现教育数据中潜在有用的教育、教学规律和教育发展趋势, 为教育管理、教育决策和教学改革提供科学的依据。以真实的教育数据作为实验数据测试集,实验结果表明,本文算法有效,在教育信息化数据处理与分析中具有重要的应用价值。

    Abstract:

    The mutual information model is introduced into the educational data association patterns mining. A new mining algorithm of the matrix-weighted positive and negative association patterns from educational data is presented based on mutual information model, and the related theorems and their proof are given. The algorithm overcomes the defects of the existing algorithms for weighted association patterns. It pays special attention to the various weights of the itemset in database, and also uses a new evaluation standard of positive and negative association patterns. Hence the positive and negative association patterns obtained from the educational data get closer to reality. Analysis on these patterns shows that, the potential educational and teaching rules, as well as educational development trend are discovered, providing a scientific basis for management, decision-making and teaching reform in education. Experiment results on real educational data demonstrate that the proposed algorithm is effective and reliable, with important potential value in the educational data processing and analyzing.

    参考文献
    相似文献
    引证文献
引用本文

余如,黄名选,黄丽霞.基于互信息的教育数据矩阵加权正负关联模式发现[J].数据采集与处理,2015,30(1):219-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-03