基于LDA主题模型的功能性miRNA-mRNA调控模块识别
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Identifying of Functional miRNA-mRNA Regulatory Modules Based on LDA Topic Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    借助mRNAs分析MicroRNAs(miRNAs)的研究已经用于阐述miRNAs调控机理,但是它们大部分的准确功能仍然处于未知状态。基于此,本文提出了一种基于LDA(Latent Dirichlet allocation)主题模型来识别特定生物条件下miRNAs和靶标mRNAs之间的调控模块。该模型首先利用Welch′s t-检验挖掘具有差异表达的miRNAs和mRNAs,然后采用折叠Gibbs抽样法进行参数估计。在上皮细胞 间充质细胞转型(Epithelial to Mesenchymal transition,EMT)数据集中的结果表明,所识别出的功能性miRNA-mRNA调控模块(FMRMs)能够构造不同生物条件下miRNAs与mRNAs之间的调控关系,从而为了解EMT生物过程和miRNA靶标治疗提供新的视角。与基于K-means聚类算法比较,LDA主题模型比K means聚类在挖掘FMRMs上更加有效。

    Abstract:

    Although much work has been done to elucidate the regulatory mechanism of miRNAs by associating miRNAs with mRNAs, their precise functions are still largely unknown. Latent dirichlet allocation (LDA) topic model is thus proposed to infer regulatory modules of miRNAs and their targets mRNAs for specific biological conditions. The proposed model firstly uses Welch′s t-test to mine differentially expressed miRNAs and mRNAs, and then a collapsed Gibbs sampling method is utilized to estimate parameters. The results on epithelial to mesenchymal transition (EMT) data sets show that the inferred functional miRNA mRNA regulatory modules (FMRMs) can construct regulatory relationships between miRNAs and mRNAs in different biological conditions, and give new insights into EMT biological process and miRNA targets therapy. Compared with K-means clustering algorithm, LDA topic model is more efficient in mining FMRMs.

    参考文献
    相似文献
    引证文献
引用本文

张俊鹏,贺建峰.基于LDA主题模型的功能性miRNA-mRNA调控模块识别[J].数据采集与处理,2015,30(1):155-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-03