一种基于字典学习的压缩感知视频编解码模型
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Dictionary Learning-Based Compressive Video Sensing Codec Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    无线多媒体传感器网络中针对视频信号处理的两个重要的问题是如何高效编解码和如何抵抗信道误码。结合压缩感知和字典学习理论,提出了一种应用于无线传感器网络的基于字典学习的压缩感知视频编解码模型。模型整体采用压缩感知理论以降低编码端复杂度,提高系统抗误码性。编码端应用差分编码和跳帧模式大大 减少了信道传输数据量;解码端采用字典学习算法增强图像的稀疏表示能力,从而提高视频重构精度。本模型在实现高效编码的同时将计算复杂度从编码端转移到解码端,从而满足编码端资源受限的应用场合。理论分析和仿真实验表明该模型可行并且有效。

    Abstract:

    The problems of efficient codec and resiliency to channel errors are important in video processing of wireless multimedia sensor networks (WMSNs). Based on the compressed sensing (CS) and dictionary learning algorithm, a dictionary learning-based compressed video sensing codec model is proposed for the WMSNs. The model uses CS to reduce the complexity of encoder effectively and improve resiliency to channel errors. In the encoder, the application of difference structure and skip mode reduces the amount of data transmitted in the channel. And in the decoder, dictionary learning algorithm helps enhance images′ sparse representation, thereby improve reconstructed video quality. The model switches the computational complexity from the encoder to the decoder and has high coding efficiency, so it can be applied to the recource-constrained embedded devices. The theory analysis and experiment results have verified the feasibility and efficiency of the model.

    参考文献
    相似文献
    引证文献
引用本文

郭继昌,金卯亨嘉.一种基于字典学习的压缩感知视频编解码模型[J].数据采集与处理,2015,30(1):59-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-03