Lasso问题的最新算法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Review on Recent Method of Solving Lasso Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着大规模数据的增加,解决Lasso问题成为一个新的热点,以往的方法很难满足大数据背景下的时间和效率问题。为了解决大规模数据及高维数据而带来的计算和储存的困难,本文从三个方面分析最新的算法,即一阶方法、随机方法及并行和分布计算。本文介绍和分析了解决最小收缩和选择算子(Least absolute shrinkage and selection operator, Lasso)问题的最新算法:梯度下降方法、交替方向乘子法(Alternating direction method of multipliers, ADMM)和坐标下降方法。其中梯度下降结合一阶方法和Nesterov的加速和光滑技术;交替方向乘子方法将随机方法融入在最新的算法中;坐标下降方法利用其坐标系的特点结合一阶方法、随机方法和并行和分布计算,本文分别从原始目标函数和对偶目标函数的角度对算法进行分析和研究。

    Abstract:

    With the increase of big data, solving Lasso problem becomes top research field. Past methods could not satisfy the time and efficient problem under big data situation. In order to deal with difficulty of computation and storage bringing from huge-scale and high-dimension data, this paper analyze the recent Lasso algorithm from three aspects: one-order method, random, and parallel and distributed computation, which play an important roles in dealing with huge-scale data problem. Based on those three aspects, this paper introduces and analyzes the novel algorithms: gradient descent method, Alternating Direction method of multipliers (ADMM), and coordinate descent method. Gradient descent method combine one order method and Nesterov's accelerate and smoothing method;ADMM put the random algorithm into the recent research; Coordinate descent make use of the character of coordinate system incorporation one-order method, random, and parallel and distributed computation. Moreover, this paper makes a deep analysis and research from primal and dual objective function.

    参考文献
    相似文献
    引证文献
引用本文

刘柳, 陶大程. Lasso问题的最新算法研究[J].数据采集与处理,2015,30(1):35-46

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-03