基于小波熵的辐射源指纹特征提取方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Fingerprint Feature Extraction Method for Emitters Based on Wavelet Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在对辐射源信号进行小波分析的基础上,提出一种基于小波熵的辐射源指纹特征提取方法。 首先计算辐射源信号的功率谱,对功率谱进行连续小波变换,提取不同尺度下小波系数的熵 特征作为辐射源信号指纹特征。识别分类器采用概率神经网络,对20部手持机进行识别实验 ,并与传统矩形积分双谱进行对比。实验结果表明,该方法能够把辐射源信号的时频特性信 息通过小波系数的熵特征映射到特征向量中,从而实现对辐射源个体的有效识别,而且该特 征参数对噪声干扰不敏感,在信噪比为20 dB时,系统识别率达到95%以上,在信噪比为5 dB 时系统识别率仍优于80%,验证了所提方法的有效性。

    Abstract:

    Based on wavelet analysis of the emitters, a new fingerprint feature ext raction method for emitter identification based on wavelet entropy is proposed. Firstly, the signal power spectra are calculated. Secondly, the wavelet coeffici e nts are extracted by continue wavelet transform. Finally, the wavelet entro py is extracted as a feature vector. Using neural network classifier, the compar ative experiments with traditional square integral bispectrum are carried out ba sed on twenty interphones. The experimental results show that the method can achieve individual classification by transferring the signal time frequenc y characteristics to the feature vectors through the entropy of the wavelet coeff icients. Besides, the proposed method is insensitive to noise, and the system re cognition rate is above 95% and more than 80% with SNRs of 20 dB and 5 dB,respectively.

    参考文献
    相似文献
    引证文献
引用本文

徐玉龙,王金明,徐志军,陈志伟,周坤.基于小波熵的辐射源指纹特征提取方法[J].数据采集与处理,2014,29(4):631-635

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-09-02