稀疏卷积非负矩阵分解的语音增强算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Speech Enhancement Based on Convolutive Nonnegative Matrix Factorization with Sparseness Constraints
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    非平稳噪声和低信噪比条件下提高增强语音质量一直以来都是语音增强研究的难题。近年来,卷积非负矩阵分解在语音增强算法中成功应用,本文进一步考虑语音信号在时频域的稀疏性,提出了稀疏卷积非负矩阵分解(Sparse Convolutive Nonnegative Matrix Factorization, SCNMF)的语音增强算法。该算法包括训练和增强两个阶段。训练阶段通过SCNMF算法分别对纯净语音和噪声的频谱进行训练,得到纯净语音和噪声字典,并将其作为增强阶段的先验信息。增强阶段首先通过SCNMF算法对带噪语音的频谱进行分解,然后利用纯净语音和噪声联合字典对语音编码矩阵进行估计,重构增强语音。本文通过实验仿真分析了稀疏因子对增强语音质量的影响。实验结果表明,在非平稳噪声和低信噪比条件下,本文算法增强效果均优于多带谱减、非负矩阵分解、卷积非负矩阵分解等传统的算法。

    Abstract:

    It’s always been a problem to improve the quality of enhanced speech in non-stationary noise and low SNR for speech enhancement research. In recent years, Convolutive Nonnegative Matrix Factorization algorithm has been well used for speech enhancement. Considering the sparsity of speech signals in the frequency domain, a speech enhancement method based on Sparse Convolutive Nonnegative Matrix Factorization(SCNMF) is proposed. Our method for speech enhancement consists of a training stage and a denoising stage. During the training stage, we model the prior information about the spectrum of speech and noise by SCNMF algorithm and the dictionary of speech and noise is constructed. During the denoising stage, the spectrum of noisy speech is analyzed by SCNMF algorithm, then, we use the dictionary of speech and noise to evaluate the coding matrix of speech, and reconstruct the enhanced speech. The impact of sparse factor on enhanced speech quality is analyzed through simulation experiments. Experimental results show that the proposed method outperforms traditional speech enhancement algorithms, such as MSS, NMF, CNMF, in non-stationary noise and low SNR.

    参考文献
    相似文献
    引证文献
引用本文

张立伟.稀疏卷积非负矩阵分解的语音增强算法[J].数据采集与处理,2014,29(2):265-273

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-05-08