基于短时能量和最小相对均方误差准则的神经网络语音水印方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Neural Network Speech Watermarking Method Based on Short-term Energy and Least Relative Mean Square Error Criterion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对传统最小均方误差(LMS)和最小二乘准则(RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法地让网络迅速收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声,低通滤波,重采样,重量化等攻击有更强的鲁棒性,性能平均提高了5%。

    Abstract:

    In order to overcome the weakness of least mean square error (LMS) and the recursive least squares(RLS), a new neural network speech watermarking method based on short-term energy and least relative mean square error(LRMS) was proposed in this paper. First and foremost, a synchronization sequence was embedded into the first frame of the speech. In addition, calculated the short-term energy of each frame and performed DWT(discrete wavelet transform) for the speech frame larger than the threshold. At last, the watermark was embedded and extracted via the trained LRMS based neural network. The balance of the watermarking capacity and robustness was achieved by setting a reasonable short-term energy threshold and the network converged fast by LM algorithm. The theoretical analysis and the experimental results show that, compared with [8], the improved neural network scheme converges faster and gets better robustness against attacks such as additive noise, low-pass filtering, re-sampling, re-quantifying, et al. Moreover, the performance achieves 5% increase on average.

    参考文献
    相似文献
    引证文献
引用本文

郝欢,陈亮,张翼鹏.基于短时能量和最小相对均方误差准则的神经网络语音水印方法[J].数据采集与处理,2014,29(2):259-264

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-05-08