一种小训练语料下基于均值超矢量聚类的说话人确认方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


An approach of Speaker Verification Based on Supervector Clustering With Poor Corpus
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统特征映射需要大量具有通道标记的语料,近年出现的通道无监督聚类方法也要求每个说话人有多段语音。为此本文讨论了一种新的基于均值超矢量聚类的说话人确认方法,在确保性能的情况下放宽对语料的要求,聚类训练语料是每个说话人只有一段语音的小语料。以女性UBM为基准,对所有女性训练语音均值超矢量相对该UBM的偏移聚类,判别待映射男性语音所属类别后进行特征映射,在特征参数域同时削减掉匹配到的通道信息和一部分女性说话人信息。实验表明,不论从性能还是语料角度,采用本文方法相对其他方法均具备一定优势。

    Abstract:

    Previous feature mapping needs a lot of corpus with channel flags. Recently unsupervised clustering on channels also needs a series of speech recorded under different channels. This paper discusses a new speaker verification method based on supervector clustering, in order to ensure the performance and reduce the data requirements. An approach based on supervector clustering under poor training corpus using the inter-speaker variability between male and female is presented. Mixed effects of speaker and channel information are clustered, then after the decision on categories of unprocessed speech feature mapping is conducted. Experiments show advantages compared with other methods under poor corpus,from corpus and performance perspective.

    参考文献
    相似文献
    引证文献
引用本文

花城,李辉.一种小训练语料下基于均值超矢量聚类的说话人确认方法[J].数据采集与处理,2014,29(2):243-247

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-05-08