基于隐马尔科夫模型的中文发音动作参数预测方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on HMM-based Articulatory Movement Prediction for Chinese
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    发音动作参数描述发音过程中唇、舌、颚等发音器官的位置与运动。本文对给定文本与语音情况下中文发音动作参数的预测方法进行研究。首先,设计了基于电磁发音仪的发音动作参数采集与预处理方法,通过头部运动规整与咬合面规整保证了发音动作参数的可靠性;其次,将隐马尔科夫模型应用于中文发音动作参数预测,采用包含声学参数与发音动作参数的双流模型结构实现从声学参数到发音动作参数的映射,并且分析对比了建模过程中不同上下文属性、模型聚类方式以及流间相关性假设对于中文发音动作参数预测性能的影响。实验结果表明,当采用三音素模型、双流独立聚类并且考虑流间相关性的情况下,可以获得最优的预测性能。

    Abstract:

    Articulatory features represent the quantitative positions and continuous movements of articulators during the production of speech. These articulators include the tongue, lips, jaw, velum and so on. This paper presents an investigation into articulatory feature prediction for Chinese when text and audio inputs are given. First, a method of recording and preprocessing articulatory features captured by electromagnetic articulography (EMA) is designed. By head movement and occlusal surface normalization, the reliability of articulatory features is guaranteed. Then, unified acoustic-articulatory hidden Markov models (HMMs) are introduced to predict Chinese articulatory features and achieve the inversion mapping from acoustic to articulatory features. Several aspects of this method are analyzed in this paper, including the effectiveness of context-dependent modeling, the difference among model clustering methods and the influence of cross-stream dependency modeling. The results show that best performance is achieved using unified acoustic-articulatory triphone HMMs with separate clustering of acoustic and articulatory model parameters and a dependent-feature model structure.

    参考文献
    相似文献
    引证文献
引用本文

蔡明琦,凌震华,戴礼荣.基于隐马尔科夫模型的中文发音动作参数预测方法研究[J].数据采集与处理,2014,29(2):204-210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-05-08