2. 南京航空航天大学电子信息工程学院, 南京, 211106
2. College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 211106, China
多输入多输出(Multiple-input multiple-output,MIMO)雷达的相关研究已成为学术界关注的重点。该种体制的雷达在发射和接收两端均配备多根天线用于发射和接收信号,相比于传统体制雷达,其自由度大幅提高,在抗干扰性能、参数估计准确度、空间分辨率等方面有显著提升[1-4]。
波达角(Direction of arrival, DOA)估计是MIMO雷达的一项基本任务,以此为基础,MIMO雷达中的多参数估计研究,如波达角和多普勒频率联合估计,也日益受到学术界重视。已有的工作多以经典的子空间算法为基础扩展而来,如多重信号分类算法(Multiple signal classification,MUSIC)[5-8]、基于旋转不变技术的估计算法(Estimation method of signal parameters via rotational invariance techniques,ESPRIT)[9-11]、传播算子算法(Propagator method, PM)[12-13]等。MUSIC算法[5]是一种经典的超分辨算法,其利用噪声子空间和方向矢量之间的正交性,通过谱峰搜索得到参数估计。文献[6]将经典MUSIC算法推广到MIMO雷达领域。虽然MUSIC算法具有估计精度高、可适用于任意构型的阵列的优点,但其谱峰搜索运算带来了巨大复杂度、且要求阵列各阵元位置完全已知,这些缺点使得MUSIC算法难以应用到实际中。目前基于MUSIC算法的研究以降低复杂度为主要研究目标[7-8]。不同于MUSIC,ESPRIT算法[9-11]利用了阵列流型的旋转不变特性和信号子空间,实现了对DOA的闭式解估计。与MUSIC相比,ESPRIT的计算复杂度大大降低。文献[14]针对二维DOA和频率联合估计,提出了一种扩展的ESPRIT算法,但其需要额外配对。文献[15]研究了双基地MIMO下的DOA和频率估计问题,其利用时延采样之间的旋转不限性实现了参数的闭式解估计,且可自动配对。MUSIC算法和ESPRIT算法通常均通过对接收信号的奇异值分解(Singular value decomposition, SVD)或对接收信号协方差矩阵的特征值分解(Eigen value decomposition, EVD)得到对特征子空间的估计。PM算法通过对接收信号矩阵(或接收信号的协方差矩阵)的简单运算得到传播算子,并由传播算子估计特征子空间,因而其无需SVD或EVD,节省了计算复杂度。低复杂度的优点使得PM算法在雷达、通信等对数据处理实时性要求较高的领域具有广泛应用前景。
在实际的电磁环境中,多径传播现象导致信号常呈现相干特性,这使得协方差矩阵存在秩亏欠,经典的子空间算法因此将不能有效估计相干信源的DOA。学术界对于相干信号的参数估计已开展了大量的研究工作。文献[16, 17]提出了一种有效的空间平滑技术(Spatial smoothing, SS),其将均匀分布的阵列分成一系列相同而又重合的子阵列,通过计算各子阵列平均协方差的方式保证了协方差矩阵的非奇异特性。文献[18-21]研究了改进的空间平滑技术,降低了阵列孔径损失。文献[22]将ESPRIT算法和前向空间平滑(Forward spatial smoothing, FSS)技术结合,解决了单基地MIMO雷达中的DOA和多普勒频率联合估计问题。除了空间平滑技术之外,文献[23]通过构造特殊的Toeplitz矩阵实现了信号的解相干,为MIMO雷达下相干信号参数估计提供了另一种思路。
PM方法复杂度相比MUSIC,ESPRIT有优势。基于PM方法,本文提出了一种降维的前向平滑-传播算子(RD-FSS-PM)算法。所提算法首先对接收信号进行降维变换,剔除了冗余数据;随后,利用前向空间平滑技术和PM算法实现了信号的解相干,以及波达角和多普勒频率的联合估计,且无需额外配对。所提算法对DOA和多普勒估计均可通过闭式解求解,无需谱峰搜索,也无需SVD或者EVD分解运算,复杂度较低。与传统的FSS-PM法相比,所提算法降低计算复杂度的同时,波达角估计精度改善而多普勒估计频率接近。此外,本文进行了误差分析,给出了详尽的仿真实验以验证算法的估计性能。
1 单基地MIMO雷达数据模型如图 1所示,假设一单基地MIMO雷达系统在收发两端采用均匀线阵,其天线数分别为M和N,相邻天线之间的距离为d,且d≤λ/2,λ为发射波形波长。在发射端,M根天线同时发射具有相同带宽和载频的正交波形信号。假设空间中存在K个远场目标(信源数K已知,若未知,其估计方法参考文献[17-20]),其中相干目标和非相干目标同时存在,K个目标的波达角分别为θ =[θ1, …, θK]T。此时,接收端信号输出经匹配滤波器滤波之后可表示为如下矩阵形式
$ \mathit{\boldsymbol{x}}\left( t \right) = \mathit{\boldsymbol{A}}\left( \theta \right)\mathit{\boldsymbol{S}}\left( t \right) + \mathit{\boldsymbol{n}}\left( t \right) $ | (1) |
![]() |
图 1 单基地MIMO雷达阵列 Fig. 1 DOA-Doppler frequency estimation model for monostatic MIMO radar |
式中:A=[ar(θ1)⊗at(θ1), …, ar(θK)⊗at(θK)]为MN×K的阵列流型矩阵,at(θk)=[1, e-j2πdsinθk/λ, …, e-j(M-1)2πdsinθk/λ]T和ar(θk)=[1, e-j2πdsinθk/λ, …, e-j(N-1)2πdsinθk/λ]T为对应于第k个目标的发射和接收方向矢量,⊗表示克罗内克积(Kronecker produce); S(t)=[s1(t), s2(t), …, sK(t)]T∈CK×1为回波信号矢量, 其第k个元素sk(t)=βkej2πfdkt/fs,βk为第k个点目标的雷达截面系数(Radar cross section,RCS),fdk为第k个点目标的多普勒频率,fs为发射波形的脉冲重复频率; n(t)∈CMN×1表示加性高斯白噪声。
阵列流型矩阵A可以表示成
$ \mathit{\boldsymbol{A}} = {\mathit{\boldsymbol{A}}_{\rm{R}}} \circ {\mathit{\boldsymbol{A}}_{\rm{T}}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{\rm{T}}}{D_1}\left( {{\mathit{\boldsymbol{A}}_{\rm{R}}}} \right)}\\ {{\mathit{\boldsymbol{A}}_{\rm{T}}}{D_2}\left( {{\mathit{\boldsymbol{A}}_{\rm{R}}}} \right)}\\ \vdots \\ {{\mathit{\boldsymbol{A}}_{\rm{T}}}{D_N}\left( {{\mathit{\boldsymbol{A}}_{\rm{R}}}} \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{\rm{T}}}}\\ {{\mathit{\boldsymbol{A}}_{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}}\\ \vdots \\ {{\mathit{\boldsymbol{A}}_{\rm{T}}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{N - 1}}} \end{array}} \right] $ | (2) |
式中:AT=[at(θ1), at(θ2), …, at(θK)]∈CM×K和AR=[ar(θ1), ar(θ2), …, ar(θK)]∈CN×K分别为包含了K个发射和接收阵列流型矢量的范德蒙(Vandermode)矩阵;
定义一个MN×(M+N-1)的变换矩阵G[24]为
$ \mathit{\boldsymbol{G}} = \left[ {\left. {\begin{array}{*{20}{c}} {\left. {\begin{array}{*{20}{c}} 1&0& \cdots &0&0&0& \cdots &0\\ 0&1& \cdots &0&0&0& \cdots &0\\ \vdots&\vdots&\ddots&\vdots&\vdots&\ddots&\vdots &{}\\ 0&0& \cdots &1&0&0& \cdots &0 \end{array}} \right\}M}\\ {\left. {\begin{array}{*{20}{c}} 0&1&0& \cdots &0&0& \cdots &0\\ 0&0&1& \cdots &0&0& \cdots &0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots &{}\\ 0&0&0& \cdots &0&1& \cdots &0 \end{array}} \right\}M}\\ \vdots \\ {\left. {\begin{array}{*{20}{c}} 0& \cdots &0&1&0&0& \cdots &0\\ 0& \cdots &0&0&1&0& \cdots &0\\ \vdots&\ddots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots \\ 0& \cdots &0&0&0&0& \cdots &1 \end{array}} \right\}M} \end{array}} \right\}M \times N} \right] $ | (3) |
对应于第k个目标的阵列流型矢量ar(θk)⊗at(θk)可以表示为
$ {\mathit{\boldsymbol{a}}_{\rm{r}}}\left( {{\theta _k}} \right) \otimes {\mathit{\boldsymbol{a}}_{\rm{t}}}\left( {{\theta _k}} \right) = \mathit{\boldsymbol{Gb}}\left( {{\theta _k}} \right) $ | (4) |
式中b(θk)=[1, e-j2πdsinθk/λ, …, e-j2π(M+N-2)dsinθk/λ]T。定义W=GHG,其详细表达式为
$ \mathit{\boldsymbol{W}} = {\rm{diag}}\left( {1,2, \cdots ,\underbrace {\min \left( {M,N} \right), \cdots ,\min \left( {M,N} \right)}_{\left| {M - N} \right| + 1}, \cdots ,2,1} \right) $ | (5) |
对接收信号x(t)右乘W-1GH矩阵可将x(t)虚拟成一个由(M+N-1)个阵元构成的均匀线阵(Uniform linear array, ULA)的接收信号,即
$ \mathit{\boldsymbol{y}}\left( t \right) = {\mathit{\boldsymbol{W}}^{ - 1}}{\mathit{\boldsymbol{G}}^{\rm{H}}}\mathit{\boldsymbol{x}}\left( t \right) = {\mathit{\boldsymbol{W}}^{ - 1}}{\mathit{\boldsymbol{G}}^{\rm{H}}}\left( {\mathit{\boldsymbol{G}}\left[ {\mathit{\boldsymbol{b}}\left( {{\theta _1}} \right), \cdots ,\mathit{\boldsymbol{b}}\left( {{\theta _K}} \right)} \right]\mathit{\boldsymbol{S}}\left( t \right) + \mathit{\boldsymbol{n}}\left( t \right)} \right) =\\ \mathit{\boldsymbol{BS}}\left( t \right) + {\mathit{\boldsymbol{W}}^{ - 1}}{\mathit{\boldsymbol{G}}^{\rm{H}}}\mathit{\boldsymbol{n}}\left( t \right) = \mathit{\boldsymbol{BS}}\left( t \right) + \mathit{\boldsymbol{n'}}\left( t \right) $ | (6) |
式中:B=[b(θ1), …, b(θK)]∈C(M+N-1)×K具有范德蒙结构; n′(t)=W-1GHn(t)为一个(M+N-1)×1的加性高斯噪声矢量。为表示方便,定义K维全一矢量η=[1, …, 1]∈C1×K,则B可以表示为
$ \mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{\eta }}\\ {\mathit{\boldsymbol{\eta \boldsymbol{\varPhi} }}}\\ \vdots \\ {\mathit{\boldsymbol{\eta }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{M + N - 2}}} \end{array}} \right] $ | (7) |
式中B的第i行为Bi=ηΦi-1, i=1, …, Μ+Ν-1。
2.2 前向空间平滑以均匀的采样间隔采集J个快拍的信号并依次进行变换可得
$ \mathit{\boldsymbol{Y}} = \left[ {y\left( {{t_1}} \right),y\left( {{t_2}} \right), \cdots ,y\left( {{t_J}} \right)} \right] $ | (8) |
取前(J-1)和后(J-1)个快拍的信号,分别记为
$ {\mathit{\boldsymbol{Y}}_1} = \left[ {y\left( {{t_1}} \right),y\left( {{t_2}} \right), \cdots ,y\left( {{t_{J - 1}}} \right)} \right] = \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_1} $ | (9) |
$ {\mathit{\boldsymbol{Y}}_2} = \left[ {y\left( {{t_2}} \right),y\left( {{t_3}} \right), \cdots ,y\left( {{t_J}} \right)} \right] = \mathit{\boldsymbol{B\psi }}{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_2} $ | (10) |
式中
$ {\mathit{\boldsymbol{S}}_1} = \left[ {S\left( {{t_1}} \right),S\left( {{t_2}} \right), \cdots ,S\left( {{t_{J - 1}}} \right)} \right] $ |
$ {{\mathit{\boldsymbol{N'}}}_1} = \left[ {n'\left( {{t_1}} \right),n'\left( {{t_2}} \right), \cdots ,n'\left( {{t_{J - 1}}} \right)} \right] $ |
$ {{\mathit{\boldsymbol{N'}}}_2} = \left[ {n'\left( {{t_2}} \right),n'\left( {{t_3}} \right), \cdots ,n'\left( {{t_J}} \right)} \right] $ |
$ \mathit{\boldsymbol{\psi }} = {\rm{diag}}\left( {{{\rm{e}}^{{\rm{j2 \mathsf{ π} }}{f_{d1}}/{f_{\rm{s}}}}},{{\rm{e}}^{{\rm{j2 \mathsf{ π} }}{f_{d2}}/{f_{\rm{s}}}}}, \cdots ,{{\rm{e}}^{{\rm{j2 \mathsf{ π} }}{f_{dK}}/{f_{\rm{s}}}}}} \right) $ |
Y1和Y2可按如下形式分成(M+N-1)块
$ {\mathit{\boldsymbol{Y}}_1} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Y}}_{1,1}}}\\ \vdots \\ {{\mathit{\boldsymbol{Y}}_{1,M + N - 1}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_{1,1}}}\\ \vdots \\ {{\mathit{\boldsymbol{B}}_{M + N - 1}}} \end{array}} \right]{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_1} = \left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{\eta }}\\ {\mathit{\boldsymbol{\eta \boldsymbol{\varPhi} }}}\\ \vdots \\ {\mathit{\boldsymbol{\eta }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{M + N - 2}}} \end{array}} \right]{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_1} $ |
$ {\mathit{\boldsymbol{Y}}_2} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Y}}_{2,1}}}\\ \vdots \\ {{\mathit{\boldsymbol{Y}}_{2,M + N - 1}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{{\left( {\mathit{\boldsymbol{B\psi }}} \right)}_1}}\\ \vdots \\ {{{\left( {\mathit{\boldsymbol{B\psi }}} \right)}_{M + N - 1}}} \end{array}} \right]{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_2} = \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\eta \psi }}}\\ {\mathit{\boldsymbol{\eta \psi \boldsymbol{\varPhi} }}}\\ \vdots \\ {\mathit{\boldsymbol{\eta \psi }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{M + N - 2}}} \end{array}} \right]{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_2} $ |
式中:Y1和Y2的第i行分别为Y1, i=ηΦi-1S1+N′1, i和Y2, i=ηψΦi-1S1+N′2, i; (Bψ)i, N′1, i和N′2, i分别为Bψ,N′1和N′2的第i行。取B和BψZ的第i行构造矩阵BE, i,由B和Bψ的范德蒙特性可得
$ {\mathit{\boldsymbol{B}}_{E,i}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_i}}\\ {{{\left( {\mathit{\boldsymbol{B\psi }}} \right)}_i}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\eta }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{i - 1}}}\\ {\mathit{\boldsymbol{\eta \psi }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{i - 1}}} \end{array}} \right] = {\mathit{\boldsymbol{B}}_{E,1}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{i - 1}} \in {{\bf{C}}^{2 \times K}} $ | (11) |
式中BE, 1=[ηT, ηψT]T。
构造矩阵YE,其共分为(M+N-1)个子矩阵,其第i个子矩阵由Y1和Y2的第i行构成,YE可写成
$ {\mathit{\boldsymbol{Y}}_E} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Y}}_{1,1}}}\\ {{\mathit{\boldsymbol{Y}}_{2,1}}}\\ {{\mathit{\boldsymbol{Y}}_{1,2}}}\\ {{\mathit{\boldsymbol{Y}}_{2,2}}}\\ \vdots \\ {{\mathit{\boldsymbol{Y}}_{1,M + N - 1}}}\\ {{\mathit{\boldsymbol{Y}}_{2,M + N - 1}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_{E,1}}}\\ {{\mathit{\boldsymbol{B}}_{E,2}}}\\ \vdots \\ {{\mathit{\boldsymbol{B}}_{E,M + N - 1}}} \end{array}} \right]{\mathit{\boldsymbol{S}}_1} + {{\mathit{\boldsymbol{N'}}}_E} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_{E,1}}}\\ {{\mathit{\boldsymbol{B}}_{E,1}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}}\\ \vdots \\ {{\mathit{\boldsymbol{B}}_{E,1}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{M + N - 2}}} \end{array}} \right]{\mathit{\boldsymbol{S}}_1} + \left[ {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{N'}}}_{E,1}}}\\ {{{\mathit{\boldsymbol{N'}}}_{E,2}}}\\ \vdots \\ {{{\mathit{\boldsymbol{N'}}}_{E,M + N - 1}}} \end{array}} \right] $ | (12) |
式中:第i个子矩阵表示为YE, i =BE, 1Φi-1S1+N′E, i∈C2×Κ; N′E和N′E, i为相应的噪声矩阵。
前向平滑技术要求将YE的(M+N-1)个子矩阵分成P个充分的子矩阵序列。令L表示每个子矩阵序列包含的子矩阵数量,YFSS, p, p=1, 2, …, P表示第p个子矩阵序列。取第一个序列为参考,则这P个子矩阵序列可以表示为[17]
$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{Y}}_{{\rm{FSS}},1}} = {\left[ {{\mathit{\boldsymbol{Y}}_{E,1}}^{\rm{T}}, \cdots ,{\mathit{\boldsymbol{Y}}_{E,L}}^{\rm{T}}} \right]^{\rm{T}}}\\ {\mathit{\boldsymbol{Y}}_{{\rm{FSS}},2}} = {\left[ {{\mathit{\boldsymbol{Y}}_{E,2}}^{\rm{T}}, \cdots ,{\mathit{\boldsymbol{Y}}_{E,L + 1}}^{\rm{T}}} \right]^{\rm{T}}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \\ {\mathit{\boldsymbol{Y}}_{{\rm{FSS}},P}} = {\left[ {{\mathit{\boldsymbol{Y}}_{E,P}}^{\rm{T}}, \cdots ,{\mathit{\boldsymbol{Y}}_{E,M + {N_{ - 1}}}}^{\rm{T}}} \right]^{\rm{T}}} \end{array} \right. $ | (13) |
第p个序列可表示为YFSS, p = [YE, pT, YE, p + 1T , …, YE, p + L-1T]T = BELΦp- 1S1 + NL′,其中L=M+N-P,BEL=[BE, 1T , (BE, 1Φ)T, …, (BE, 1ΦL-1)T]T; N′L为相应的噪声矩阵。
第p个序列的协方差矩阵RRD, p为
$ {\mathit{\boldsymbol{R}}_{{\rm{RD}},p}} = E\left[ {{\mathit{\boldsymbol{V}}_{{\rm{FSS}},p}}\mathit{\boldsymbol{V}}_{{\rm{FSS}},p}^{\rm{H}}} \right] = {\mathit{\boldsymbol{B}}_{EL}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{p - 1}}{\mathit{\boldsymbol{R}}_s}{\left( {{\mathit{\boldsymbol{B}}_{EL}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{p - 1}}} \right)^{\rm{H}}} + {\mathit{\boldsymbol{W}}^{ - 1}}{\sigma ^2}{\mathit{\boldsymbol{I}}_{2L}} $ |
计算所有P个序列的协方差并计算其平均值,即可得到经过前向平滑后的阵列协方差矩阵
$ {\mathit{\boldsymbol{R}}_{{\rm{RDf}}}} = \frac{1}{P}\sum\limits_{p = 1}^P {{\mathit{\boldsymbol{R}}_{{\rm{RD}},p}}} = {\mathit{\boldsymbol{B}}_{EL}}\left( {\frac{1}{P}\sum\limits_{p = 1}^P {{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{p - 1}}{\mathit{\boldsymbol{R}}_s}{{\left( {{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{p - 1}}} \right)}^{\rm{H}}}} } \right){\mathit{\boldsymbol{B}}_{EL}} + {\mathit{\boldsymbol{W}}^{ - 1}}{\sigma ^2}{\mathit{\boldsymbol{I}}_{2L}} = \\{\mathit{\boldsymbol{B}}_{EL}}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_{EL}^{\rm{H}} + {\mathit{\boldsymbol{W}}^{ - 1}}{\sigma ^2}{\mathit{\boldsymbol{I}}_{2L}} $ | (14) |
式中平滑后的信源协方差矩阵
将BEL按如下形式分块[13]
$ {\mathit{\boldsymbol{B}}_{EL}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_1}}\\ {{\mathit{\boldsymbol{B}}_2}} \end{array}} \right] $ | (15) |
式中:B1为一K×K的非奇异矩阵,B2∈C(2L-K)×K。B2可被视作B1的线性变换
$ \mathit{\boldsymbol{P}}_{{\rm{RDc}}}^{\rm{H}}{\mathit{\boldsymbol{B}}_1} = {\mathit{\boldsymbol{B}}_2} $ | (16) |
式中PRDc∈CK×(2L-K)为传播算子矩阵。经过前向平滑后的阵列协方差矩阵RRDf可写作
$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{R}}_{{\rm{RDf}}}} = {\mathit{\boldsymbol{B}}_{EL}}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_{EL}^{\rm{H}} + {\mathit{\boldsymbol{I}}_{2L}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_1}}\\ {{\mathit{\boldsymbol{B}}_2}} \end{array}} \right]\mathit{\boldsymbol{R}}_s^f\left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{B}}_1^{\rm{H}}}&{\mathit{\boldsymbol{B}}_2^{\rm{H}}} \end{array}} \right] + {\mathit{\boldsymbol{I}}_{2L}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_1^{\rm{H}}}&{{\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_2^{\rm{H}}}\\ {{\mathit{\boldsymbol{B}}_2}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_1^{\rm{H}}}&{{\mathit{\boldsymbol{B}}_2}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_2^{\rm{H}}} \end{array}} \right] }\\ {+ {\mathit{\boldsymbol{I}}_{2L}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_1^{\rm{H}}}&{{\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_1^{\rm{H}}{\mathit{\boldsymbol{P}}_{{\rm{RDc}}}}}\\ {\mathit{\boldsymbol{P}}_{{\rm{RDc}}}^{\rm{H}}{\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_1^{\rm{H}}}&{\mathit{\boldsymbol{P}}_{{\rm{RDc}}}^{\rm{H}}{\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{R}}_s^f\mathit{\boldsymbol{B}}_1^{\rm{H}}{\mathit{\boldsymbol{P}}_{{\rm{RDc}}}}} \end{array}} \right] + {\mathit{\boldsymbol{I}}_{2L}}} \end{array} $ | (17) |
取RRDf的前K列,记为RRDf1,剩下的(2L-K)列记为RRDf2,则传播算子矩阵PRDc可由RRDf估计得到
$ {\mathit{\boldsymbol{P}}_{{\rm{RDc}}}} = \mathit{\boldsymbol{R}}_{{\rm{RDf1}}}^ + {\mathit{\boldsymbol{R}}_{{\rm{RDf2}}}} $ | (18) |
式中:RRDf1∈C2L×K,RRDf2∈C2L×(2L-K)。
定义PRD=[IK, PRDc]H,由式(15, 16)得
$ {\mathit{\boldsymbol{P}}_{{\rm{RD}}}}{\mathit{\boldsymbol{B}}_1} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_1}}\\ {{\mathit{\boldsymbol{B}}_2}} \end{array}} \right] = {\mathit{\boldsymbol{B}}_{EL}} $ | (19) |
根据式(12),将PRD同样分成L个子矩阵
$ {\mathit{\boldsymbol{P}}_{{\rm{RD}}}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_{{\rm{RD,1}}}}}\\ {{\mathit{\boldsymbol{P}}_{{\rm{RD,2}}}}}\\ \vdots \\ {{\mathit{\boldsymbol{P}}_{{\rm{RD,}}L}}} \end{array}} \right] $ | (20) |
式中PRD, i∈C2×K, i=1, 2, …, L。取PRD的前(L-1)和后(L-1)个子矩阵,分别记为PRD1和PRD2,可得
$ {\mathit{\boldsymbol{P}}_{{\rm{RD1}}}}{\mathit{\boldsymbol{B}}_1} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_{E,1}}}\\ \vdots \\ {{\mathit{\boldsymbol{B}}_{E,1}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{L - 2}}} \end{array}} \right] $ | (21) |
$ {\mathit{\boldsymbol{P}}_{{\rm{RD2}}}}{\mathit{\boldsymbol{B}}_1} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{B}}_{E,1}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}}\\ \vdots \\ {{\mathit{\boldsymbol{B}}_{E,1}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{L - 1}}} \end{array}} \right] $ | (22) |
由式(21)和式(22)可得PRD1B1Φ=PRD2B1,也即
$ {\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{ \boldsymbol{\varPhi} B}}_1^{ - 1} = \mathit{\boldsymbol{P}}_{{\rm{RD1}}}^ + {\mathit{\boldsymbol{P}}_{{\rm{RD2}}}} $ | (23) |
令φ=PRD1+PRD2。由式(23)可得φ和Φ是相似矩阵,有相同的特征值。对φ特征值分解,记其特征值为[λ1, λ2, …, λK],
$ {{\hat \theta }_k} = \arcsin \left( { - {\rm{angle}}\left( {{\lambda _k}} \right)\lambda /2{\rm{ \mathsf{ π} }}d} \right)\;\;\;\;k = 1,2, \cdots ,K $ | (24) |
将PRD右乘
$ {{\mathit{\boldsymbol{\tilde B}}}_{EL}} = \left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{\eta }}\\ \vdots \\ {\mathit{\boldsymbol{\eta }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{L - 1}}}\\ {\mathit{\boldsymbol{\eta \psi }}}\\ \vdots \\ {\mathit{\boldsymbol{\eta }}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{L - 1}}\mathit{\boldsymbol{\psi }}} \end{array}} \right]\mathit{\boldsymbol{ \boldsymbol{\varPi} }} = \left[ {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\tilde B}}}_{ELa}}}\\ {{{\mathit{\boldsymbol{\tilde B}}}_{ELb}}} \end{array}} \right] $ | (25) |
式中
$ \mathit{\boldsymbol{\hat \psi }} = \mathit{\boldsymbol{\tilde B}}_{ELa}^ + {{\mathit{\boldsymbol{\tilde B}}}_{ELb}} = \mathit{\boldsymbol{ \boldsymbol{\varPi} \psi \boldsymbol{\varPi} }} $ | (26) |
则多普勒频率估计为
$ \begin{array}{*{20}{c}} {{f_{{\rm{d}}k}} = {\rm{angle}}\left( {{\gamma _k}} \right){f_{\rm{s}}}/\left( {2{\rm{ \mathsf{ π} }}} \right)}&{k = 1,2, \cdots ,K} \end{array} $ | (27) |
式中γk为
本算法中,由于
本文所提RD-FSS-PM的主要步骤及相应复杂度总结如下:
(1)按式(6)对接收信号进行降维变换得到Y,并继而得到YE…………………………无需复乘运算;
(2)按式(13,14)由前向空间平滑得到RRDf………………………………………O{P(J-1)(2L)2};
(3) 按式(18)估计传播算子矩阵PRDc,构造PRD………………………O{4LK2+2LK(2L-K)+K3};
(4) 对PRD分块,得到PRD1和PRD2,由旋转不变性,按式(23,24)估计DOA……O{6K2(L-1)+2K3};
(5) 构造
本算法所采用的降维变换可以有效降低复杂度。所提算法的复杂度为O{P(J-1)(2L)2+4L2K+13K2L-6K2+4K3}, P=M+N-L。与之对比,传统的FSS-PM算法需要O{(J-1)P(2LM)2+4L2M2K+13K2LM-6K2M+4K3}, P=N-L+1。图 2和图 3给出了RD-FSS-PM算法和传统FSS-PM算法的复杂度随快拍数和发射天线数的变化对比图。图 2中,M=12,N=12,K=3,P=8,快拍数由10增加到200。图 3中,N=12,K=3,P=8,J=100,发射天线数由10增加到100。由图 2和图 3可得,所提RD-FSS-PM算法相比FSS-PM算法,复杂度有明显降低。
![]() |
图 2 算法的复杂度随快拍数增加对比图 Fig. 2 Complexity comparison with increasing number of snapshots |
![]() |
图 3 算法的复杂度随发射天线数增加对比图 Fig. 3 Complexity comparison with increasing number of transmit antennas |
3.2 误差分析
在噪声干扰下,实际协方差矩阵为
$ {{\mathit{\boldsymbol{\bar R}}}_{{\rm{RDf}}}} \buildrel \Delta \over = {\mathit{\boldsymbol{R}}_{{\rm{RDf}}}} + \partial {\mathit{\boldsymbol{R}}_{{\rm{RDf}}}} $ |
式中:RRDf为真实值,∂RRDf为误差矩阵。取RRDf的前K行和后(2L-K)行,记为RRDf1和RRDf2,有
$ {{\mathit{\boldsymbol{\bar R}}}_{{\rm{RDf1}}}} \buildrel \Delta \over = {\mathit{\boldsymbol{R}}_{{\rm{RDf1}}}} + \partial {\mathit{\boldsymbol{R}}_{{\rm{RDf1}}}} $ |
$ {{\mathit{\boldsymbol{\bar R}}}_{{\rm{RDf2}}}} \buildrel \Delta \over = {\mathit{\boldsymbol{R}}_{{\rm{RDf2}}}} + \partial {\mathit{\boldsymbol{R}}_{{\rm{RDf2}}}} $ |
式中:∂RRDf1和∂RRDf2分别为RRDf1和RRDf2的误差。定义PRDc
$ {{\mathit{\boldsymbol{\bar P}}}_{{\rm{RD}}}} = \left[ \begin{array}{l} {\mathit{\boldsymbol{I}}_K}\\ {{\mathit{\boldsymbol{\bar P}}}_{{\rm{RDc}}}} \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_{{\rm{RD}},1}} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RD}},1}}}\\ {{\mathit{\boldsymbol{P}}_{{\rm{RD}},2}} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RD}},2}}}\\ \vdots \\ {{\mathit{\boldsymbol{P}}_{{\rm{RD}},L}} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RD}},L}}} \end{array}} \right] $ | (28) |
式中∂PRD, i∈C2×K为∂PRD的第i个子矩阵。由(PRD1+∂PRD1)+的一阶近似,可得[12]
$ \mathit{\boldsymbol{\hat \varphi }} = \mathit{\boldsymbol{B}}_1^{ - 1}\left( {{\mathit{\boldsymbol{I}}_K} + \mathit{\boldsymbol{P}}_{{\rm{RD1}}}^ + \left( {\partial {\mathit{\boldsymbol{P}}_{{\rm{RD}}2}} - \partial {\mathit{\boldsymbol{P}}_{{\rm{RD}}1}}} \right)} \right)\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}{\mathit{\boldsymbol{B}}_1} $ | (29) |
根据
$ {{\mathit{\boldsymbol{\bar {\hat B}}}}_1} = {{\mathit{\boldsymbol{\hat B}}}_1} + \partial {{\mathit{\boldsymbol{\hat B}}}_1} $ | (30) |
式中
$ {{\mathit{\boldsymbol{\bar {\tilde B}}}}_{Ela}} = {{\mathit{\boldsymbol{\bar P}}}_{{\rm{RDo}}}}{{\mathit{\boldsymbol{\bar {\hat B}}}}_1} = {\mathit{\boldsymbol{P}}_{{\rm{RDo}}}}{{\mathit{\boldsymbol{\hat B}}}_1} + {\mathit{\boldsymbol{P}}_{{\rm{RDo}}}}\partial {{\mathit{\boldsymbol{\hat B}}}_1} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RDo}}}}{{\mathit{\boldsymbol{\hat B}}}_1} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RDo}}}}\partial {{\mathit{\boldsymbol{\hat B}}}_1} $ |
$ {{\mathit{\boldsymbol{\bar {\tilde B}}}}_{Elb}} = {{\mathit{\boldsymbol{\bar P}}}_{{\rm{RDe}}}}{{\mathit{\boldsymbol{\bar {\hat B}}}}_2} = {\mathit{\boldsymbol{P}}_{{\rm{RDe}}}}{{\mathit{\boldsymbol{\hat B}}}_2} + {\mathit{\boldsymbol{P}}_{{\rm{RDe}}}}\partial {{\mathit{\boldsymbol{\hat B}}}_2} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RDe}}}}{{\mathit{\boldsymbol{\hat B}}}_2} + \partial {\mathit{\boldsymbol{P}}_{{\rm{RDe}}}}\partial {{\mathit{\boldsymbol{\hat B}}}_2} $ |
根据
$ \mathit{\boldsymbol{\hat \psi }} = \mathit{\boldsymbol{\psi }} + \mathit{\boldsymbol{\tilde B}}_{ELa}^ + \left( {\partial {{\mathit{\boldsymbol{\tilde B}}}_{ELb}} - \partial {{\mathit{\boldsymbol{\tilde B}}}_{ELa}}} \right)\mathit{\boldsymbol{\psi }} $ |
定义
据此,可推导得DOA和多普勒频率估计的均方误差为
$ E\left\{ {{{\left( {\partial {\theta _i}} \right)}^2}} \right\} = {{\left( {\frac{\lambda }{{2{\rm{ \mathsf{ π} }}d\cos {\theta _i}}}} \right)}^2}{{\left[ {{\mathop{\rm Re}\nolimits} \left( {\frac{{\partial {\lambda _k}}}{{{\lambda _k}\left| {{\lambda _k}} \right|}}} \right)} \right]}^2} = \frac{1}{2}{{\left( {\frac{\lambda }{{2{\rm{ \mathsf{ π} }}d\cos {\theta _i}}}} \right)}^2}\left[ {E{{\left\{ {\left| {\frac{{\partial {\lambda _k}}}{{{\lambda _k}\left| {{\lambda _k}} \right|}}} \right|} \right\}}^2} - \\{\mathop{\rm Im}\nolimits} \left\{ {E{{\left\{ {\left| {\frac{{\partial {\lambda _k}}}{{{\lambda _k}\left| {{\lambda _k}} \right|}}} \right|} \right\}}^2}} \right\}} \right] = \frac{1}{2}{{\left( {\frac{\lambda }{{2{\rm{ \mathsf{ π} }}d}}} \right)}^2}{{\left[ {\frac{1}{{\cos {\theta _i}\sin {\theta _i}}}} \right]}^2} \cdot \left\{ {{{\left[ {\frac{\lambda }{{2{\rm{ \mathsf{ π} }}d\sin {\theta _i}}}} \right]}^2}E\left\{ {{{\left| {\partial {\lambda _k}} \right|}^2}} \right\} \\- {\mathop{\rm Im}\nolimits} \left\{ {E\left\{ {{{\left( {\lambda _k^ * } \right)}^2}{{\left( {\partial {\lambda _k}} \right)}^2}} \right\}} \right\}} \right\} $ | (31) |
$ E\left\{ {{{\left( {\Delta {f_i}} \right)}^2}} \right\} = {\left( {\frac{{{f_{\rm{s}}}}}{{2{\rm{ \mathsf{ π} }}{f_i}}}} \right)^2}{\left\{ {{\mathop{\rm Im}\nolimits} \left( {\frac{{\partial {\gamma _k}}}{{{\gamma _k}}}} \right)} \right\}^2} = \frac{1}{2}{\left( {\frac{{{f_{\rm{s}}}}}{{2{\rm{ \mathsf{ π} }}{f_i}}}} \right)^2}\left[ {E\left\{ {{{\left| {\partial {\gamma _k}} \right|}^2}} \right\} - {\mathop{\rm Re}\nolimits} \left\{ {E\left\{ {{{\left( {\partial {\gamma _k}} \right)}^2}{{\left( {\gamma _k^ * } \right)}^2}} \right\}} \right\}} \right] $ | (32) |
在估计理论中,CRB是无偏算法的理论性能上限,常作为衡量算法估计精度的基准。单基地MIMO雷达下角度和多普勒频率估计的CRB为[25]
$ {\rm{CRB}} = \frac{{{\sigma ^2}}}{2}{\left( {{\mathop{\rm Re}\nolimits} \left( {{\mathit{\boldsymbol{D}}^{\rm{H}}}\mathit{\boldsymbol{D}}} \right)} \right)^{ - 1}} $ | (33) |
式中:σ2为噪声功率; D=[ST⊗D1, D2⊗A], D1=
现将所提算法的优点总结如下:
(1) RD-FSS-PM算法适用于相干和非相干目标同时存在的场景,该性质在第2节算法推导和下一节仿真部分得到证实;
(2) RD-FSS-PM算法与FSS-PM算法相比复杂度大幅降低,该性质在3.1节复杂度分析部分得到证实;
(3) RD-FSS-PM算法对DOA估计精度与FSS-PM算法相比大幅改善,同时可保持相近的多普勒频率估计精度,该性质在下一节仿真部分得到证实;
(4) RD-FSS-PM算法可实现DOA和多普勒频率的自动配对,该性质在第2节算法推导部分得到证实。
4 仿真结果及分析为检验所提算法的估计性能,使用蒙特卡洛仿真的方法进行比较各种算法的性能,并以均方根误差(Root mean squared error,RMSE)作为评价估计精度的量度
$ {\rm{RMSE}} = \frac{1}{K}\sum\limits_{k = 1}^K {\sqrt {\frac{1}{{3\;000}}\sum\limits_{l = 1}^{3\;000} {\left[ {{{\left( {{{\hat a}_{k,l}} - {a_k}} \right)}^2}} \right]} } } $ | (34) |
式中:
图 4显示了所提RD-FSS-PM算法在SNR=10 dB时的50次蒙特卡洛仿真的估计结果散布图,其余参数设置为M =12, N=12, J =100, P=8。由图 4可发现10 dB时,所提算法可精确估计,同时可实现DOA和多普勒频率的正确配对。
![]() |
图 4 SNR=10 dB估计结果 Fig. 4 Estimation results at SNR=10 dB |
图 5, 6对所提RD-FSS-PM算法、传统FSS-PM算法的RMSE估计和CRB进行了对比。在图 5, 6中,假设M =12, N=12, J =100, P=10。由图 5, 6可发现,所提算法相比FSS-PM算法,DOA估计性能更接近CRB,准确度有明显提高,多普勒频率估计精度在较高信噪比下趋于接近。
![]() |
图 5 DOA估计性能对比图 Fig. 5 DOA estimation performance comparison |
![]() |
图 6 多普勒频率估计性能对比图 Fig. 6 Doppler frequency estimation performance comparison |
图 7, 8验证了所提RD-FSS-PM算法在不同快拍数情形下的性能并进行了对比。在图 7, 8中,假设快拍数分别为100,200,300,其余参数设置为M =12, N=12,P=8。由图 7, 8可得,快拍数增加时,其带来的可用信息也增多,所提算法的DOA估计精度得到提高。在低信噪比下,对多普勒频率的估计精度改善较小,随着信噪比增加,提升变得明显。
![]() |
图 7 不同快拍数下DOA估计性能对比图 Fig. 7 DOA estimation performance with different J |
![]() |
图 8 不同快拍数下多普勒频率估计性能对比图 Fig. 8 Doppler frequency estimation performance with different J |
图 9-12分别显示了所提算法在发射、接收天线数变化时的DOA和多普勒频率估计性能。图 10, 11中,N=12, P=8,J=100,发射天线数为8, 10和12。图 12, 13中,M=12, P=8,J= 100,接收天线数为8, 10, 12。由图 9—12可得,由于分集增益的增加,所提算法在天线数增加时DOA和多普勒估计性能均得到改善。
![]() |
图 9 不同发射天线数下的DOA估计性能对比图 Fig. 9 DOA estimation performance with different M |
![]() |
图 10 不同发射天线数下的多普勒频率估计性能对比图 Fig. 10 Doppler frequency estimati-on performance with diffe-rent M |
![]() |
图 11 不同接收天线数下的DOA估计性能对比图 Fig. 11 DOA estimation performan-ce with different N |
![]() |
图 12 不同接收天线数下的多普勒频率估计性能对比图 Fig. 12 Doppler frequency estimati-on performance with diff-erent N |
5 结束语
针对单基地MIMO雷达下的DOA和多普勒频率联合估计问题,本文提出了一种基于降维变换的快速算法,并进行了复杂度和误差分析。所提RD-FSS-PM算法首先对接收信号进行降维变换,剔除冗余数据;随后应用前向空间平滑方法实现了对变换后的接收信号的解相干;最后依据旋转不变性,利用PM算法获得了对目标DOA和多普勒频率的估计。由仿真实验可知,所提RD-FSS-PM算法与传统FSS-PM算法相比,其复杂度大大降低,多普勒频率估计性能接近而DOA估计性能大为改善。
[1] |
Li J, Stoica P, Xu Luzhou, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 967-871. |
[2] |
Li J, Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106-114. |
[3] |
Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838. |
[4] |
Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873-3883. DOI:10.1109/TSP.2006.879267 |
[5] |
Schmidt R O. Multiple emmitter location and signal parameter specetral estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. |
[6] |
Wilcox D, Sellathurai M, Ratnarajah T.Acomparison of MIMO and phased array radar with the application of MUSIC[C]//IEEE Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA: [s.n.], 2007: 1529-1533. http://ieeexplore.ieee.org/document/4487486/
|
[7] |
Zhang Xiaofei, Xu Lingyun, Xu Lei, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communication Letters, 2010, 14(12): 1161-1163. DOI:10.1109/LCOMM.2010.102610.101581 |
[8] |
Gao X, Zhang X, Feng G, et al. On the MUSIC-derived approaches of angle estimation for bistatic MIMO radar[C]//IEEE International Conference on Wireless Networks and Information Systems. Shanghai: [s.n.], 2009: 343-346. http://dl.acm.org/citation.cfm?id=1730701
|
[9] |
Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotational in variance techniques[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 37(7): 984-995. |
[10] |
Chen D, Chen B, Qian G. Angle estimation using ESPRIT in MIMO radar[J]. IEEE Electronics Letters, 2008, 44(12): 770-771. |
[11] |
Chen J, Gu H, Su W. Angle estimation using ESPRIT withoutpairing in MIMO radar[J]. IEEE Electronics Letter, 2008, 44(24): 1422-1423. |
[12] |
Tayem N, Kwon H M. L-Shape 2-Dimensional arrival angle Estimation with propagator method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(5): 1622-1630. DOI:10.1109/TAP.2005.846804 |
[13] |
Tayem N, Kwon H M. Angle estimation with propagator method for correlated sources under unknown symmetric toeplitz noise[C]//IEEE Canadian Conference on Electrical and Computer Engineering. Saskatoon, Sask: [s.n.], 2005: 316-319. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1556936
|
[14] |
Strobach P. Total least squares phased averaging and 3-D ESPRIT for joint azimuth-elevation carrier estimation[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 54-62. |
[15] |
Yunhe C. Joint estimation of angle and Doppler frequency for bistatic MIMO radar[J]. IEEE Electronic Letters, 2010, 46(2): 170-172. DOI:10.1049/el.2010.2685 |
[16] |
Shan T J, Kailath T. Adaptive beamforming for coherent signals andinterference[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(3): 527-536. DOI:10.1109/TASSP.1985.1164583 |
[17] |
Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(3): 527-536. |
[18] |
Du W X, Kirlin R L. Improved spatial smoothing techniques for DOA estimation of coherent signals[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1208-1210. DOI:10.1109/78.80975 |
[19] |
WangBH, WangYL, Chen H. Weighted spatial smoothing for direction-of-arrival estimation of coherent signals[C]//Proceedings of IEEE Antennas and Propagation Society International Symposium. San Antonio, TX: [s.n.], 2002: 668-671. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1164649
|
[20] |
Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signals identification[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(1): 8-14. DOI:10.1109/29.17496 |
[21] |
Pillai S U, Kwon B H. Performance analysis of MUSIC-type high resolution estimators for direction finding in correlated and coherent scenes[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(8): 1176-1189. |
[22] |
Cao R, Zhang X. Joint angle and Doppler frequency estimation of coherent targets in monostatic MIMO radar[J]. International Journal of Electronics, 2015, 102(5): 1-23. |
[23] |
Li C, Liao G, Zhu S, et al. An ESPRIT-like algorithm for coherent DOA estimation based on data matrix decomposition in MIMO radar[J]. Signal Processing, 2011, 91(8): 1803-1811. |
[24] |
Zhang Xiaofei, Xu Dazhuan. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation[J]. Electronics Letters, 2011, 47(4): 283-284. DOI:10.1049/el.2010.3279 |
[25] |
Stoica P, Nehorai A. Performance study of conditional and unconditional direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1990, 38(10): 1783-1795. DOI:10.1109/29.60109 |