基于集成学习的输变电线路工程造价组合预测模型
DOI:
作者:
作者单位:

1.国网江苏省电力有限公司;2.国网江苏省电力有限公司经济技术研究院

作者简介:

通讯作者:

基金项目:


Cost Prediction of Power Transmission and Transformation Line Projects Based on Stacking Ensemble Learning
Author:
Affiliation:

1.State Grid Jiangsu Electric Power Co,Ltd;2.State Grid Jiangsu Electric Power Co,Ltd Economic and Technical Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为实现更精准的输变电线路工程造价预测,提升工程投资管控能力,本文提出一种融合特征优化与Stacking集成学习的预测模型。首先,基于工程造价构成进行理论分析,并结合随机森林量化特征重要性,进行两阶段特征筛选以构建关键特征集,增强模型输入的代表性。进而,针对单一模型在处理输变电工程异构造价数据时的结构性局限,构建Stacking集成框架,以支持向量回归(SVR)、BP神经网络(BPNN)和随机森林(RF)作为异质基学习器,岭回归作为元学习器,通过五折交叉验证生成元特征,以融合各基学习器优势。基于J省120个实际工程数据的实验结果表明:Stacking集成模型的预测均方根误差(RMSE)为865.382万元,平均绝对百分比误差(MAPE)为9.231%,性能不仅显著优于单一模型,亦优于PSO-SVR、GA-BP等主流参数优化模型。进一步的案例分析表明,该模型能有效克服单一模型在应对技术方案稀疏、路径复杂非线性及极端边界条件等行业固有挑战的缺陷,证明了其在输变电工程造价预测任务中具有更强的领域适配性与泛化能力。

    Abstract:

    To achieve more accurate cost forecasting for transmission and substation line projects and enhance investment control capabilities, this paper proposes a predictive model that integrates feature optimization and Stacking ensemble learning. First, based on a theoretical analysis of engineering cost composition and quantified feature importance using Random Forest (RF), a two-stage feature screening process is performed to construct a key feature set, thereby enhancing the representativeness of the model"s input. Subsequently, addressing the structural limitations of single models in handling the heterogeneous cost data of transmission and substation projects, a Stacking ensemble framework is constructed, utilizing Support Vector Regression (SVR), BP Neural Network (BPNN), and Random Forest (RF) as heterogeneous base learners, and Ridge Regression as the meta-learner; meta-features are generated through five-fold cross-validation to effectively integrate the advantages of each base learner. Experimental results based on 120 actual project data points from Province J show that the Stacking ensemble model achieves a Root Mean Square Error (RMSE) of 865.382 million RMB and a Mean Absolute Percentage Error (MAPE) of 9.231%. The model"s performance is not only significantly superior to single models but also outperforms mainstream parameter optimization models such as PSO-SVR and GA-BP. Further case studies demonstrate that the model effectively overcomes the inherent defects of single models in addressing typical industry challenges like sparse technical schemes, complex non-linear paths, and extreme boundary conditions, proving its stronger domain adaptability and generalization ability for transmission and substation project cost forecasting tasks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-12-04
  • 最后修改日期:2026-01-23
  • 录用日期:2026-02-06
  • 在线发布日期: