基于多任务学习和多域特征融合的雷达辐射源信号分选方法
DOI:
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院;2.昆明理工大学图书馆

作者简介:

通讯作者:

基金项目:

昆明理工大学人培基金(KKZ3202403190)


Radar emitter signal sorting method based on multi-task learning and multi-domain feature fusion
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology;2.Library, Kunming University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    雷达辐射源信号分选在电子战场中占据着至关重要的地位。针对传统分选方法在复杂电磁环境下处理效率低下、分选准确率不足,以及5G通信技术发展带来的雷达-通信频谱共存问题,本文提出了一种基于多任务学习和多域特征融合的创新解决方法。该方法首先构建了一个多任务学习框架,用于对含噪雷达-通信混合信号进行联合预处理,包括信号清洗、降噪和时频特征增强;其次,设计了特征融合网络,分别从时频图像域与时延-多普勒域提取多尺度特征,并采用改进的迭代注意力机制实现跨域特征融合,生成具有强判别性的高维特征表示;最后,基于DeepCluster的聚类模型完成对雷达辐射源信号的准确分选。实验结果表明,在-6dB低信噪比条件下,该方法能够有效抑制通信信号干扰,且达到93.75%的分选准确率。与现有方法相比,所提出的方案在提升信号预处理的鲁棒性、保证分选准确率方面展现出显著优势,具有良好的工程应用前景。

    Abstract:

    Radar emitter signal sorting plays a critical role in modern electronic warfare. To address the limitations of traditional sorting methods—such as low efficiency and limited accuracy in complex electromagnetic environments—as well as the challenges posed by radar-communication spectrum coexistence brought about by the development of 5G communication technologies, this paper proposes an innovative solution based on multi-task learning and multi-domain feature fusion. The proposed method first constructs a multi-task learning framework to jointly preprocess noisy radar-communication mixed signals, including signal cleansing, denoising, and time-frequency feature enhancement. Then, a feature fusion network is designed to extract multi-scale features from both the time-frequency image domain and the time-delay-Doppler domain. An improved iterative attention mechanism is employed to achieve cross-domain feature fusion, resulting in a high-dimensional feature representation with strong discriminative power. Finally, a clustering model based on DeepCluster is used to accurately sort radar emitter signals. It is demonstrated by experiments that under low signal-to-noise ratio (SNR) conditions of -6 dB, the proposed method effectively suppresses communication signal interference and achieves a sorting accuracy of 93.75%. Compared with existing approaches, the proposed solution demonstrates significant advantages in enhancing the robustness of signal preprocessing and maintaining high sorting accuracy, underscoring its strong potential for practical engineering applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-07-19
  • 最后修改日期:2025-09-11
  • 录用日期:2025-11-06
  • 在线发布日期: