基于改进GLU-Net的岩石薄片显微图像拼接
DOI:
作者:
作者单位:

1.四川大学电子信息学院;2.成都西图科技有限公司

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62071315);四川省国际科技创新合作项目(2024YFHZ0289)


Image Stitching of Rock Thin Sections Microscopic Images Based on Improved GLU-Net
Author:
Affiliation:

1.College of Electronics and Information Engineering, Sichuan University;2.Chengdu Xitu Technology Co. Ltd.

Fund Project:

National Natural Science Foundation of China (No. 62071315); Sichuan International Science and Technology Innovation Cooperation Project (No. 2024YFHZ0289)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    岩石薄片显微图像常常呈现出局部纹理复杂、模糊以及高噪声的特征,导致传统的特征提取和匹配算法在高分辨率岩石薄片显微图像拼接中容易出现找不到有效特征点而难以实现全景拼接的问题,并且处理速度较慢。针对上述问题,提出了一种基于改进GLU-Net的岩石薄片显微图像拼接方法。该方法通过结合改进的相关性计算模块增强全局与局部对应关系,使用特征金字塔网络实现多尺度特征融合,设计添加了自适应卷积注意力机制优化关键区域注意力,并使用全局与局部解码器获取光流,最后对图像进行单应性变换实现拼接,构建了一种新的图像拼接网络模型。实验结果表明,与传统图像拼接算法和其他经典图像拼接网络模型相比,提出的网络表现出更好的拼接效果,在自制数据集拼接测试中拼接准确率达到了86.75%,每组平均配准耗时为0.394s,在提高拼接准确率的同时有效平衡了处理效率。

    Abstract:

    Rock thin-section microscopic images frequently exhibit complex local textures, blurriness, and high noise levels, posing significant challenges for traditional feature extraction and matching algorithms. These methods often fail to identify effective feature points in high-resolution rock thin-section images, hindering the realization of panoramic stitching while also resulting in slow processing speeds. To address the aforementioned issues, a rock thin- section microscopic image stitching method based on an improved GLU-Net has been proposed. This method integrates an enhanced correlation computation module to improve global and local correspondence, employs a Feature Pyramid Network for multi-scale feature fusion, incorporates a designed adaptive convolutional attention mechanism to optimize attention to key regions, utilizes global and local decoders to obtain optical flow, and applies homography transformation for image stitching, thereby constructing a novel image stitching network model. Experimental results demonstrate that, compared to traditional image stitching algorithms and other classical image stitching network models, the proposed network achieves superior stitching performance. In stitching tests on a self-constructed dataset, a stitching accuracy of 86.75% has been attained with an average registration time of 0.394 seconds per pair, effectively balancing enhanced accuracy with processing efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-07-18
  • 最后修改日期:2025-11-07
  • 录用日期:2025-11-07
  • 在线发布日期: