基于高低频增强与通道-空间注意力的自监督小样本分类
DOI:
作者:
作者单位:

1.上海理工大学;2.上海海洋大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(61603255);上海市晨光计划项目(18CG52)资助。


Self-Supervised Few-Shot Classification Based on High-Low Frequency Enhancement and Channel-Spatial Attention
Author:
Affiliation:

1.University of Shanghai for Science and Technology;2.Shanghai Ocean University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    摘要:小样本图像分类因训练样本有限而面临特征表达能力受限的问题。本文从频域多粒度特征融合增强与多维度特征协同交互的角度出发,提出了一种融合高低频特征自适应增强模块与全局通道-空间注意力模块的分类方法。首先通过高低频分离提取细粒度纹理与整体结构信息,并在高频分支引入多尺度卷积以捕获不同感受野下的语义信息。其次,通过融合通道注意力、通道洗牌与空间注意力机制,打破了通道间的信息隔离,并使通道和空间特征得到充分融合与交互。最后,利用自监督对比学习引入无标签辅助任务,有效缓解小样本条件下的过拟合问题。相较于基准方法SCL,该方法在四个标准小样本分类数据集的1-shot与5-shot任务中均实现性能提升,其中在miniImageNet上提升1.59%/1.24%,tieredImageNet上提升1.83%/1.37%,CIFAR-FS上提升2.74%/2.16%,FC100上提升1.91%/2.08%,验证了该方法的有效性。

    Abstract:

    Abstract: Few-shot image classification suffers from limited feature representation capability due to the scarcity of training samples. This paper proposes a classification method that integrates a High-Low Frequency Adaptive Enhancement module and a Global Channel-Spatial Attention module, aiming to enhance multi-granularity frequency-domain features and enable multidimensional feature interaction. First, high-low frequency decomposition is applied to extract fine-grained texture and global structural information, and multi-scale convolutions are introduced in the high-frequency branch to capture semantic features under various receptive fields. Second, by combining channel attention, channel shuffle, and spatial attention mechanisms, the proposed method breaks the isolation between channels and promotes full fusion and interaction between channel and spatial features. Finally, a self-supervised contrastive learning strategy is adopted to introduce an auxiliary unlabeled task, effectively alleviating overfitting under limited data conditions. Compared with the baseline method SCL, the proposed method achieves consistent performance improvements on four standard few-shot classification benchmarks under both 1-shot and 5-shot settings, with gains of 1.59%/1.24% on miniImageNet, 1.83%/1.37% on tieredImageNet, 2.74%/2.16% on CIFAR-FS, and 1.91%/2.08% on FC100, demonstrating its effectiveness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-05-10
  • 最后修改日期:2025-11-06
  • 录用日期:2025-11-07
  • 在线发布日期: