基于视觉/激光雷达轻量化目标三维检测与定位方法
DOI:
作者:
作者单位:

1.国网江苏省电力有限公司;2.1.国网江苏省电力有限公司;3.南京航空航天大学 自动化学院;4.国网江苏省电力有限公司无锡供电分公司

作者简介:

通讯作者:

基金项目:

国网江苏省电力有限公司科技项目(J2023014)


A Lightweight 3D Object Detection and Localization Method Based on Visual/LiDAR Fusion
Author:
Affiliation:

1.State Grid Jiangsu Electric Power Co., Ltd;2.Wuxi Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd;3.Wuxi Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目标三维检测与定位是无人机精确巡检与避障的重要保障。传统方法通常将目标检测、定位通过同一网络实现,存在网络结构复杂、计算量大、实时部署困难等问题。针对于此,提出了一种基于网络解耦的轻量化目标三维检测与定位方法:首先,提出了一种基于高效特征提取与增强注意力机制的轻量化视觉二维目标检测网络,降低网络整体参数量的同时提高对多种目标的泛化检测能力;其次,提出了一种具有跨层连接与辅助损失的视觉/激光雷达融合深度补全网络,实现高精度稠密深度图估计;最后,设计了检测目标像素/深度对齐方案,通过坐标变换实现目标三维空间位置的精确计算。试验结果表明,相对于Yolov9目标检测算法,本文算法目标检测精度提高了14%;相对于AVOD目标定位算法,本文方法目标三维定位精度提高了45%。同时,本文算法在无人机端侧运行频率达到36帧/秒,相对于AVOD提升了76%,在无人机目标检测领域具有较好应用参考价值。

    Abstract:

    Accurate 3D object detection and localization are critical for UAV-based inspection and obstacle avoidance. Traditional methods often integrate detection and localization within a unified network, resulting in complex architectures, high computational costs, and challenges in real-time deployment. To address these issues, we propose a lightweight 3D object detection and localization framework based on network decoupling. First, a lightweight 2D object detection network is designed, incorporating efficient feature extraction and an enhanced attention mechanism, which significantly reduces the number of parameters while improving generalization across diverse target types. Second, we introduce a visual/LiDAR fusion-based depth completion network with cross-layer connections and auxiliary loss functions to achieve high-precision dense depth map estimation. Finally, a pixel/depth alignment scheme is developed to accurately compute 3D spatial positions of detected objects via coordinate transformation. Experimental results demonstrate that, compared to the YOLOv9 detection algorithm, the proposed method improves object detection accuracy by 14%, and enhances 3D localization accuracy by 45% over the AVOD framework. Moreover, the proposed approach achieves a processing rate of 36 frames per second on UAV edge devices, representing a 90% increase over AVOD, highlighting its practical value for real-time UAV-based object detection applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-11
  • 最后修改日期:2025-05-07
  • 录用日期:2025-06-08
  • 在线发布日期: