基于BYOL和对比聚类的通信信号无监督调制识别方法
DOI:
作者:
作者单位:

青岛理工大学

作者简介:

通讯作者:

基金项目:


An Unsupervised Modulation Recognition Method for Communication Signals Based on BYOL and Contrastive Clustering
Author:
Affiliation:

Qingdao University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    自动调制识别是信号处理流程中信号检测与解调之间的关键环节。针对现有方法在实际无线电环境中过度依赖标注数据,难以准确识别未知调制类型的问题,本文提出一种基于自举式潜在特征法(Bootstrap Your Own Latent,BYOL)自监督表征学习与对比聚类机制的无监督通信信号调制识别方法。当前主流调制识别算法主要基于监督学习,需要大量标注数据支撑模型训练,但实际中获取充足且准确的标注数据往往成本高昂甚至不可行。无监督和自监督方法能够有效解决上述问题,但现有方法通常存在特征提取能力不足、聚类精度较低等缺陷,难以适应复杂信道环境。本文方法无需任何人工标注,首先利用BYOL框架,通过双分支结构分别处理同一信号的不同子片段,以自监督方式学习信号数据的内在稳定特征;其次,引入实例级与聚类级对比学习模块,前者增强同一信号不同增强视图的特征一致性,后者提高特征空间不同调制类型的区分性,从而实现对未知调制类型的高精度盲分类。实验在RadioML2018.01A数据集上进行验证,各项聚类评价指标相比现有算法均提升10%以上。此外,通过消融实验进一步证实BYOL模块与对比聚类机制对模型性能提升的关键作用。混淆矩阵分析表明,在10dB下该方法对AM-DSB-WC、FM、GMSK等典型调制类型识别准确率接近理想值,对其他较难区分的类型也表现出较强的抗混淆能力与鲁棒性,体现了良好的泛化性能。综上所述,本文提出的无监督调制识别方法能够有效缓解实际无线通信场景下标注数据稀缺的问题,具有广泛的应用前景。

    Abstract:

    Automatic modulation recognition (AMR) is a key component in the signal processing chain between signal detection and demodulation. To address the heavy dependence on labeled data in practical radio environments, which limits reliable recognition of previously unseen (unknown) modulation types, this paper proposes an unsupervised modulation recognition method for communication signals based on Bootstrap Your Own Latent (BYOL) self-supervised representation learning and a contrastive clustering mechanism. Conventional modulation recognition algorithms are predominantly supervised and require large amounts of labeled data, which is often costly or even infeasible to obtain in real-world scenarios. Unsupervised and self-supervised approaches can alleviate this issue, but existing methods typically suffer from insufficient representation learning capacity and suboptimal clustering performance, and thus struggle to cope with complex channel conditions. The proposed method does not rely on any manual labels. First, we employ a BYOL framework with a dual-branch architecture to encode different sub-segments of the same signal, thereby learning intrinsic and stable representations in a self-supervised manner. Then, instance-level and cluster-level contrastive learning modules are introduced: the former enhances feature consistency across different augmented views of the same signal, while the latter improves the separability of different modulation types in the feature space, thereby enabling high-accuracy blind clustering of unknown modulation types. Experiments conducted on the public RadioML2018.01A dataset show that the proposed method outperforms existing algorithms by more than 10% in various clustering evaluation metrics. Ablation studies further confirm the critical roles of the BYOL module and the contrastive clustering mechanism in improving overall performance. Confusion-matrix analysis demonstrates that, at 10 dB, the proposed method achieves near-ideal recognition accuracy for typical modulation types such as AM-DSB-WC, FM, and GMSK, and also exhibits strong robustness and anti-confusion capability for other more challenging modulation types. In summary, the proposed unsupervised modulation recognition method effectively alleviates the problem of label scarcity in real wireless communication scenarios and shows strong potential for practical deployment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-12-25
  • 录用日期:2026-01-06
  • 在线发布日期: