基于非对称双通道与嵌套多重信息蒸馏的 两种轻量化图像超分辨率网络
DOI:
作者:
作者单位:

1.哈尔滨工业大学(深圳)信息学部;2.鹏城实验室;3.哈尔滨工业大学(深圳)实验与创新实践教育中心;4.深圳市未来媒体技术研究院

作者简介:

通讯作者:

基金项目:


Two Lightweight Image Super-Resolution Networks Based on Asymmetric Dual-Channel and Nested Multiplex Information Distillation
Author:
Affiliation:

1.Division of Information Science, Harbin Institute of Technology, Shenzhen;2.Peng Cheng Laboratory;3.Education Center of Experiments Innovation, Harbin Institute of Technology, Shenzhen;4.Shenzhen Institute of Future Media Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    信息多重蒸馏网络(IMDN)为一种高效的图像超分辨率模型。为进一步优化IMDN的轻量 化性能,本文提出两种独立改进方案:非对称通道拆分(AMCS)与嵌套多重信息蒸馏块(NIMDB) 。AMCS 将输入特征拆分为通道数不等的双路分支,增强对不同特征的超分辨率重建能力; NIMDB则将蒸馏块内的卷积层替换为另一个蒸馏块从而形成嵌套蒸馏结构,在保留原网络结构 的同时,实现对特征进行再一次更细粒度的提取。轻量级模型IMDN-RTC及原IMDN上的实验 表明:AMCS能显著提升轻量模型性能(相比轻量化IMDN-RTC,PSNR提升最高0.16),NIMDB 则更适配原模型结构(相比原IMDN,PSNR提升最高0.09,SSIM提升最高0.0014)。通过对不 同规模的模型采用适合的轻量化策略进行适配,不仅分别减少参数量5%与11%,还实现了峰值 信噪比(PSNR)及结构相似性指数(SSIM)两个指标的最大化提升。

    Abstract:

    The Information Multi - Distillation Network (IMDN) represents an efficient image super - resolution model. To further optimize the lightweight performance of IMDN, this study presents two independent improvement strategies: Asymmetric Channel Splitting (AMCS) and Nested Multi - Information Distillation Block (NIMDB). AMCS divides the input features into two branches with unequal numbers of channels, thereby enhancing the super - resolution reconstruction capabilities for different features. Specifically, this approach enables the network to better handle and reconstruct various feature components. NIMDB, on the other hand, replaces the convolutional layers within the distillation block with another distillation block, establishing a nested distillation architecture. This structure allows for a more refined extraction of features while maintaining the original network framework. Experimental results on the lightweight model IMDN - RTC and the original IMDN demonstrate that AMCS can significantly enhance the performance of lightweight models. Specifically, compared to the lightweight IMDN - RTC, the Peak Signal - to - Noise Ratio (PSNR) is improved by up to 0.16. NIMDB, conversely, is more compatible with the original model structure. In comparison to the original IMDN, it achieves a maximum PSNR improvement of 0.09 and a maximum improvement of 0.0014 in the Structural Similarity Index (SSIM). By adapting suitable lightweight strategies to models of different scales, this research not only reduces the parameter count by 5% and 11% respectively but also maximizes the improvement of both PSNR and SSIM.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-03-26
  • 最后修改日期:2025-08-24
  • 录用日期:2025-09-16
  • 在线发布日期: