多智能体协同的开放域多模态三维模型识别算法研究
DOI:
作者:
作者单位:

1.天津大学;2.中国人民大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(62272337,62072232),天津自然科学基金(16JCZDJC31100, 16JCZDJC31100),企业档案多模态信息智能管理大模型关键技术研究及应用(项目号:2024-X-001)


Research on Multi-Agent Collaborative Open-Set Multimodal 3D Model Recognition
Author:
Affiliation:

1.Tianjin University;2.Renmin University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解决开放域条件下三维模型无标签数据类别识别困难的问题,本文提出了一种多智能体协同的开放域三维模型识别算法。首先,构建多智能体系统,模拟人类协作学习过程,成员智能体分别处理不同模态的三维模型数据,提取对应特征向量,领导智能体通过特征融合网络整合多模态信息,形成全局特征向量。通过奖励机制驱动智能体探索多模态特征空间,并利用多模态信息的关联性进行自监督学习,从而优化分类策略。其次,在强化学习环境中设计了一种基于密度聚类的渐进式标签生成方法,通过动态调整聚类参数,为无标签数据迭代生成高质量伪标签,缓解传统方法因标签缺失导致的性能瓶颈。实验结果表明,本方法在三维数据集OS-MN40上平均精度均值达到65.6%,将方法迁移至图像领域后在CIFAR10数据集上的分类准确率达到95.6%,为开放域三维模型识别研究提供了通用且高效的解决方案。

    Abstract:

    To address the challenge of recognizing unlabeled 3D models in open-set domain, this paper proposes a multi-agent collaborative algorithm for open-set multimodal 3D model recognition. The algorithm employs a reinforcement learning framework to simulate human cognitive processes. Within this framework, a multi-agent system is utilized to extract and fuse multimodal information, enabling a comprehensive understanding of the feature space while leveraging the similarity of multimodal samples to enhance model training. Additionally, a progressive label generation method is introduced in the reinforcement learning environment. It dynamically adjusts clustering constraints to generate reliable pseudo-labels for a subset of unlabeled data during training, mimicking human exploratory learning of unknown data. These mechanisms collectively update the network parameters based on environmental feedback rewards, effectively controlling the extent of exploratory learning and ensuring accurate learning for unknown categories. Experimental evaluations on the OS-MN40, OS-MN40-Miss, and CIFAR10 datasets demonstrate that the proposed algorithm achieves competitive results, validating its robustness and generalization capabilities across diverse scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-03-25
  • 最后修改日期:2025-04-25
  • 录用日期:2025-07-16
  • 在线发布日期: