多模态持续学习方法研究进展
DOI:
作者:
作者单位:

山东大学

作者简介:

通讯作者:

基金项目:

新一代人工智能国家科技重大专项


Research Progress on Multimodal Continual Learning Methods
Author:
Affiliation:

Shandong University

Fund Project:

National Science and Technology Major Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多模态持续学习(Multimodal Continual Learning, MMCL)作为机器学习和人工智能领域的一个重要研究方向,旨在通过融合多种模态数据(如图像、文本、语音等)来实现持续的知识积累与任务适应。相较于传统单模态学习方法,MMCL不仅能够并行处理多源异构数据,还能在有效保持已有知识的同时适应新任务需求,展现出在智能系统中的巨大应用潜力。本文系统性地对多模态持续学习进行综述。首先,从基本概念、评估体系和经典单模态持续学习方法三个维度阐述了MMCL的基础理论框架。其次,深入剖析了MMCL在实际应用中的优势与挑战:尽管其在多模态信息融合方面具有显著优势,但仍面临模态不平衡、异构性融合等关键挑战,这些挑战既制约了当前方法的性能表现,也为未来研究指明了方向。基于此,本文随后从基于回放、正则化、参数隔离和大模型四个主要方面,全面梳理了MMCL方法的研究现状与最新进展。最后,对MMCL的未来发展趋势进行了前瞻性展望。

    Abstract:

    Multimodal Continual Learning (MMCL), as a significant research direction in the fields of machine learning and artificial intelligence, aims to achieve continuous knowledge accumulation and task adaptation through the integration of multiple modal data (such as images, text, audio, etc.). Compared with traditional single-modal learning methods, MMCL not only enables parallel processing of multi-source heterogeneous data but also effectively retains existing knowledge while adapting to new task requirements, demonstrating immense application potential in intelligent systems. This paper provides a systematic review of multimodal continual learning. Firstly, the fundamental theoretical framework of MMCL is elaborated from three dimensions: basic concepts, evaluation systems, and classical single-modal CL methods. Secondly, the advantages and challenges of MMCL in practical applications are thoroughly analyzed: despite its significant advantages in multimodal information fusion, it still faces critical challenges such as modal imbalance and heterogeneous fusion, which not only constrain the performance of current methods but also indicate future research directions. Based on this, the paper then comprehensively reviews the research status and latest advancements in MMCL methods from four main aspects: replay-based, regularization-based, parameter isolation-based, and large model-based approaches. Finally, a forward-looking perspective on the future development trends of MMCL is presented.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-03-07
  • 最后修改日期:2025-06-04
  • 录用日期:2025-07-16
  • 在线发布日期: