基于调和函数理论的二阶段遥感目标实例分割算法
DOI:
作者:
作者单位:

北京航空航天大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金面上项目


Two-Stage Remote Sensing Object Instance Segmentation Based on Harmonic Function Theory
Author:
Affiliation:

BUAA

Fund Project:

The National Natural Science Foundation of China, General Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文提出了一种基于调和背景建模的二阶段实例分割方法,可实现复杂遥感图像背景下目标的快速且精细的实例分割。方法包括两个阶段:第一阶段采用可灵活替换的目标检测器(如 YOLOv10 或 DINO)获取候选目标框;第二阶段设计为“即插即用”的掩膜计算模块,无需额外训练即可基于调和函数模型对背景进行快速回归,并计算前景掩膜,从而提升掩膜计算的精度与鲁棒性。本文方法以调和函数理论及复分析中的相关定理为数学基础,以Dirichlet问题为核心框架,创新性地提出利用局部边界信息推断全局背景的实例掩膜生成策略。通过将Dirichlet问题转化为最小二乘回归形式,算法兼具可实现性与灵活性。在NWPU VHR-10数据集上的实验结果表明,与典型方法(Mask R-CNN、Mask2Former等)相比,本文方法在{\mathrm{AP}}_{\mathrm{box}}和{\mathrm{AP}}_{\mathrm{mask}}指标上均取得更优表现,其中在{\mathrm{AP}}_{\mathrm{mask}}^{50}指标上达到92.1%,较现有最佳结果提升2.5%。结果验证了该方法在遥感目标分割任务中的有效性与应用潜力。

    Abstract:

    This paper presents a two-stage instance segmentation method based on harmonic background modeling, which enables rapid and precise segmentation of targets in complex remote sensing images. The proposed framework consists of two stages. In the first stage, candidate bounding boxes are generated by a flexible and replaceable object detector (e.g., YOLOv10 or DINO). The second stage introduces a "plug-and-play" mask computation module that leverages a harmonic function model to regress the background and compute the foreground mask without additional training, thereby improving both accuracy and robustness. The method is grounded in harmonic function theory and fundamental theorems of complex analysis, with the Dirichlet problem serving as the core framework. It innovatively infers global background information from local boundary conditions to generate instance masks. By reformulating the Dirichlet problem into a least-squares regression, the algorithm achieves both feasibility and adaptability. Experiments conducted on the NWPU VHR-10 dataset demonstrate that, compared with representative methods such as Mask R-CNN and Mask2Former, the proposed approach attains superior performance in both{\mathrm{AP}}_{\mathrm{box}}and {\mathrm{AP}}_{\mathrm{mask}} metrics. In particular, it achieves an {\mathrm{AP}}_{\mathrm{mask}}^{50} of 92.1%, surpassing the best existing results by 2.5%, which confirms its effectiveness and potential in remote sensing instance segmentation tasks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-02-24
  • 最后修改日期:2025-10-15
  • 录用日期:2025-12-31
  • 在线发布日期: