基于改进反向蒸馏网络的电子元器件表面缺陷检测方法
DOI:
作者:
作者单位:

1.东南大学;2.贵州航天计量测试技术研究所

作者简介:

通讯作者:

基金项目:


Surface defect detection of electronic components based on improved reverse distillation network
Author:
Affiliation:

1.Southeast University;2.Institute of Guizhou Aerospace Measuring and Testing Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对电子元器件表面缺陷类型复杂、尺寸微小难检测问题,本文提出了一种基于改进反向蒸馏网络的电子元器件表面缺陷检测模型。首先模型采用无监督学习的方法,有效降低了对大量标注数据的依赖;其次,通过运用反向蒸馏网络架构,改变了传统蒸馏网络中教师模型单向指导学生模型的模式,提高了模型在表面缺陷检测任务中的适应性;然后在反向蒸馏网络模型的学生解码器中,引入了感受野注意力卷积模块,以增强模型对微小缺陷的检测能力;最后采用余弦相似度作为损失函数训练学生网络和瓶颈模块。本文采用自建的电子元器件表面缺陷检测数据集进行实验,显著提高了检测精度,在AUROC图像级指数和像素级指数上分别达到了86.7%和89.1%,在AUPRO像素级指数上达到了69.4%。

    Abstract:

    Addressing the issues of complex surface defect types and minute defect sizes in electronic components that are difficult to detect, this paper proposes an electronic component surface defect detection model based on an improved reverse distillation network. Firstly, the model adopts an unsupervised learning approach, effectively mitigating the dependency on a large amount of annotated data. Secondly, by employing a reverse distillation network architecture, it alters the traditional mode of one-way guidance from the teacher model to the student model in distillation networks, thereby enhancing the model's adaptability in surface defect detection tasks. Furthermore, a receptive field attention convolutional module is introduced into the student decoder of the reverse distillation network to bolster the model's ability to detect minute defects. Lastly, the cosine similarity is utilized as the loss function to train the student network and the bottleneck module. Experimental results using a self-constructed dataset for electronic component surface defect detection demonstrate significant improvements in detection accuracy, achieving 86.7% and 89.1% in AUROC at the image and pixel levels, respectively, and 69.4% in AUPRO at the pixel level.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-12-30
  • 最后修改日期:2025-07-30
  • 录用日期:2025-08-13
  • 在线发布日期: