基于VBGMM-RBF联合网络的水声信号去噪方法
DOI:
作者:
作者单位:

江苏科技大学海洋学院

作者简介:

通讯作者:

基金项目:


Denoising method for hydroacoustic signal based on VBGMM-RBF joint network
Author:
Affiliation:

Jiangsu University Of Science and Technology Ocean College

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    水声信号去噪技术旨在通过抑制水下背景噪声,克服从噪声中恢复有价值的目标信号的难题。由于噪声大多呈现非高斯性,传统的基于高斯噪声的去噪技术难以有效应用于复杂的水下环境,特别是在较低信噪比的情况下。本文采用变分贝叶斯高斯混合模型(Variational Bayesian Gaussian Mixture Model , VBGMM)与径向基函数(Radial Basis Function , RBF)网络联合构建检噪去噪网络,首先利用短时傅里叶变换(Short-Time Fourier Transform, STFT)对水声信号进行特征提取,将STFT的幅度谱作为特征;其次采用VBGMM对水下环境中的非高斯噪声进行精细建模,从而更准确地把握噪声的统计特性;最后利用RBF网络将检测到的非高斯噪声与目标信号分离,从而有效实现水声信号的去噪处理。具体来说,针对高斯混合模型(Gaussian Mixture Model , GMM)参数最优值难以求解的问题,本文采用期望最大化(Expectation Maximization , EM)算法优化GMM参数,获取噪声敏感的多元高斯混合分布。针对RBF网络参数难以初始化的问题,本文将检噪GMM的均值和标准差用于RBF激活函数参数的初始化,使检噪的先验分布迁移至去噪网络,从而获得噪声敏感的去噪RBF网络。仿真实验表明本文算法能在较低信噪比的情况下对噪声进行有效的去除。

    Abstract:

    Hydroacoustic signal denoising focuses on extracting valuable target signals by suppressing underwater background noise. Due to the non-Gaussian nature of noise, traditional Gaussian-based denoising methods struggle in complex underwater environments, particularly at low signal-to-noise ratios. This study employs the variational Bayesian Gaussian mixture model (VBGMM) and radial basis function (RBF) network to design a noise detection and denoising framework. First, the short-time Fourier transform (STFT) extracts features from hydroacoustic signals, using its amplitude spectra as the features. Next, the VBGMM models non-Gaussian underwater noise more accurately to capture its statistical properties. Finally, the RBF network identifies the statistical characteristics of noise and separates detected non-Gaussian noise from the target signal, effectively denoising hydroacoustic signals. Specifically, to address the challenge of optimizing Gaussian mixture model (GMM) parameters, this study applies the expectation maximization (EM) algorithm. This approach derives a noise-sensitive multivariate Gaussian mixture distribution. In order to solve the problem of complex initialization of RBF network parameters, this study uses the mean and standard deviation of the noise detection GMM to initialize the RBF activation function parameters. It transfers the noise detection prior distribution to the denoising network. This results in a noise-sensitive RBF network for denoising. Simulation experiments demonstrate that the proposed algorithm effectively removes noise even at low signal-to-noise ratios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-08-20
  • 录用日期:2025-11-07
  • 在线发布日期: