基于个性化联邦学习和语义通信的语音传输系统
DOI:
作者:
作者单位:

南京邮电大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金(No.62071242)


Personalized Federated Learning and Semantic Communication based Speech Transmission System
Author:
Affiliation:

Nanjing University of Posts and Telecommunications

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    面向多用户语音传输场景,提出一种使用超网络个性化联邦学习的深度学习语义通信系统(Deep learning based semantic communication system using federated learning based on hypernetworks, DeepSC-FedHN)。具体地,边缘服务器采用超网络来衡量每个本地用户语义编码器中各模块的重要性,生成个性化聚合权重矩阵来更新相应模型参数。同时,采用联邦学习(Federated learning, FL)算法聚合模型的信道编解码器和语义解码器部分。实验结果表明,提出的DeepSC-FedHN方案总体优于本地训练方案、联邦平均(Federated averaging, FedAvg)方案、FedProx方案和采用分层个性化联邦学习的深度学习语义通信系统(Deep learning based semantic communication system using layer-wised personalized federated learning, DeepSC-pFedLA)。

    Abstract:

    For multi-user speech transmission scenarios, deep learning based semantic communication system using federated learning based on hypernetworks (DeepSC-FedHN) is proposed. Specifically, an edge server uses a hypernetwork to measure the importance of each module in each local user's semantic encoder, and generates a personalized aggregation weight matrix to update the corresponding model parameters. Meanwhile, the federated learning (FL) algorithm is used to aggregate the model parameters of channel codec and semantic decoder. The experimental results show that the proposed DeepSC-FedHN outperforms the local training scheme, the federated averaging (FedAvg)-based scheme, the FedProx-based scheme, and deep learning based semantic communication system using layer-wised personalized federated learning (DeepSC-pFedLA) in overall performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2025-08-17
  • 录用日期:2025-11-07
  • 在线发布日期: