中文核心期刊
中国科技论文统计源期刊
国际刊号:1004-9037
国内刊号:32-1367/TN
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中国科学技术协会
  • 主办:南京航空航天大学
  •           中国电子学会
  • 国际刊号:1004-9037
  • 国内刊号:32-1367/TN
  • 地址:南京市御道街29号
  • 电话:025-84892742
  • 传真:025-84892742
  • E-mail:sjcj@nuaa.edu.cn
  • 邮编:210016
戴继生,尚河坤.一种基于实值变分贝叶斯推断的大规模MIMO系统下行信道估计方法[J].数据采集与处理,2021,36(6):1094-1103
一种基于实值变分贝叶斯推断的大规模MIMO系统下行信道估计方法
Downlink Channel Estimation for Massive MIMO System Based on Real-Valued Variational Bayesian Inference
投稿时间:2021-07-10  修订日期:2021-11-09
DOI:10.16337/j.1004-9037.2021.06.003
中文关键词:  大规模多输入多输出  信道估计  实值转换  变分贝叶斯推理  稀疏信号恢复
英文关键词:massive multiple input multiple output (MIMO)  channel estimation  real-valued transformation  variational Bayesian inference (VBI)  sparse signal recovery
基金项目:国家自然科学基金(62071206)资助项目。
作者单位邮编
戴继生 江苏大学电气信息工程学院镇江 212013 212013
尚河坤 江苏大学电气信息工程学院镇江 212013 212013
摘要点击次数: 138
全文下载次数: 171
中文摘要:
      酉矩阵变换是一种常用的实值化方法,可有效地降低计算复杂度。然而,在现有的基于酉矩阵变换的大规模多输入多输出系统(Multiple input multiple output, MIMO)下行信道估计方法中,观测矩阵的维度增加了一倍,若不进行维度压缩,降低计算复杂度的目标将难以实现。虽然利用信号空间和噪声空间的正交性可压缩维度,但信号空间只能近似计算获得,不可避免地带来性能损失。为了改善信道估计性能,本文将信号空间矩阵当作变量,在估计过程中自适应地调整信号空间矩阵,但这使得信号空间矩阵和稀疏信号矩阵高度耦合,传统的贝叶斯推断无法适用。为了应对该挑战,本文进一步引入列向量独立分解的贝叶斯变分假设,成功将信号空间矩阵和稀疏信号矩阵解耦。仿真结果表明,所提方法可显著提升信道估计性能。
英文摘要:
      Unitary matrix transformation is a commonly used real-valued method, which can effectively reduce computational complexity. However, the dimension of the observation matrix is doubled in the existing downlink channel estimation method for massive Multiple input multiple output (MIMO) systems based on unitary matrix transformation. Without dimensional compression, the goal of reducing computational complexity is difficult to achieve. Although the orthogonality of signal space and noise space can compress the dimension, the signal space can only be approximately calculated, leading to performance loss. To improve channel estimation performance, the signal space matrix is regarded as a variable and adaptively adjusted in the process. Since the signal space matrix and sparse signal matrix are highly coupled, the traditional Bayesian inference is not applicable. Therefore, the column-independent variational Bayesian inference (VBI) factorization is adopted to decouple the signal space matrix and sparse signal matrix successfully. Simulation results show that this method can significantly improve the channel estimation performance.
查看全文  HTML  查看/发表评论

Copyright @2010-2015《数据采集与处理》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892742      传真:025-84892742       E-mail:sjcj@nuaa.edu.cn

您是本站第2450827位访问者 本站今日一共被访问221

技术支持:北京勤云科技发展有限公司