首页  |  期刊简介  |  稿件审稿流程  |  学术道德规范  |  编委会  |  征订启事  |  联系我们  |  English
中文核心期刊
中国科技论文统计源期刊
国际刊号:1004-9037
国内刊号:32-1367/TN
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中国科学技术协会
  • 主办:南京航空航天大学
  •           中国电子学会
  • 国际刊号:1004-9037
  • 国内刊号:32-1367/TN
  • 地址:南京市御道街29号
  • 电话:025-84892742
  • 传真:025-84892742
  • E-mail:sjcj@nuaa.edu.cn
  • 邮编:210016
基于对称不确定性和邻域粗糙集的肿瘤分类信息基因选择
Informative Gene Selection for Tumor Classification Based on Symmetric Uncertainty and Neighborhood Rough Set
投稿时间:2016-06-05  修订日期:2018-05-12
DOI:
中文关键词:  基因表达谱;邻域粗糙集;对称不确定性;特征选择;肿瘤分类
英文关键词:gene expression profiles; neighborhood rough set; symmetric uncertainty; feature selection; tumor classification
基金项目:
作者单位E-mail
叶明全 皖南医学院 YMQ@WNMC.EDU.CN 
高凌云 皖南医学院  
伍长荣 安徽师范大学数学计算机科学学院  
黄道斌 皖南医学院  
胡学钢 合肥工业大学计算机与信息学院  
摘要点击次数: 123
全文下载次数: 
中文摘要:
      基因表达谱中信息基因选择是有效建立肿瘤分类模型的关键问题。肿瘤基因表达谱具有高维小样本、噪声大且存在大量无关和冗余基因等特点。为了获得基因数量尽可能少而分类能力尽可能强的一组信息基因,提出一种基于对称不确定性和邻域粗糙集的肿瘤分类信息基因选择SUNRS方法。首先利用对称不确定性指标评估信息基因的重要度,以剔除大量无关和冗余基因,获取信息基因的候选子集;然后利用邻域粗糙集约简算法对信息基因候选子集进行寻优,获得信息基因的目标子集。实验结果表明,SUNRS方法能够用较少的信息基因获得更高的分类精度,从而既能改善算法的泛化性能,又能提高时间效率。
英文摘要:
      Informative gene selection is an essential step to perform tumor classification with large scale gene expression profiles. However, it is difficult to select informative genes related to tumor from gene expression profiles because of its characteristics such as high dimensionality and relatively small samples, many noises, and some of the genes are superfluous and irrelevant. To deal with the challenging problem of finding an informative gene subset with the least number of genes but the highest classification performance, a novel hybrid gene selection algorithm named SUNRS is proposed in this paper based on the symmetric uncertainty (SU) and neighborhood rough set (NRS). Firstly, the symmetric uncertain index, which aims to eliminate redundant and irrelevant genes, is used to select top-ranked genes as the candidate gene subset. Secondly, the neighborhood rough set reduction algorithm is applied to obtain the target gene subset by optimizing the candidate gene subset. Experiment results show that the proposed algorithm can obtain higher classification accuracy with less informative gene, which not only improves the generalization performance of the algorithm, but also enhances the time efficiency.
  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《数据采集与处理》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892742      传真:025-84892742       E-mail:sjcj@nuaa.edu.cn

您是本站第1035565位访问者 本站今日一共被访问487

技术支持:北京勤云科技发展有限公司