首页  |  期刊简介  |  稿件审稿流程  |  学术道德规范  |  编委会  |  征订启事  |  联系我们  |  English
中文核心期刊
中国科技论文统计源期刊
国际刊号:1004-9037
国内刊号:32-1367/TN
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中国科学技术协会
  • 主办:南京航空航天大学
  •           中国电子学会
  • 国际刊号:1004-9037
  • 国内刊号:32-1367/TN
  • 地址:南京市御道街29号
  • 电话:025-84892742
  • 传真:025-84892742
  • E-mail:sjcj@nuaa.edu.cn
  • 邮编:210016
郭继昌,孙骏.基于广义轮换矩阵的伪随机广义二进制轮换矩阵设计[J].数据采集与处理,2014,29(5):677-682
基于广义轮换矩阵的伪随机广义二进制轮换矩阵设计
Design of Pseudo Random Generalized Binary Rotation Matrix Based on Generalized Rotation Matrix
  
DOI:
中文关键词:  压缩感知;测量矩阵;伪随机数列;广义二进制轮换矩阵;伪随机广义二进制轮换矩阵
英文关键词:compressed sensing; measurement matrix; pseudo random sequence; generalized binary rotation matrix; pseudo random generalized binary rotation matrix
基金项目:
作者单位
郭继昌,孙骏 天津大学电子信息工程学院,天津大学电子信息工程学院 
摘要点击次数: 989
全文下载次数: 18278
中文摘要:
      压缩感知中,测量矩阵在信号的获取和重构过程中起着重要的作用。传统的随机测量矩阵在采样率较高的情况下,能够获得比较好的重构效果,但在低采样率下的重构效果不够理想。确定性测量矩阵自身存在一些限制因素,与随机测量矩阵相比,重构效果有所降低。基于广义轮换矩阵(GR),提出了两种结构随机矩阵:广义二进制轮换矩阵(GBR)和伪随机广义二进制轮换矩阵(PGBR)。仿真结果表明,相对于传统的测量矩阵,新的测量矩阵在二维图像重建方面效果较好,所需重构时间相差不大,在较低的采样率下能够获得更加精确的重建。
英文摘要:
      In compressed sensing, measurement matrix plays an important role in signal acquisition and reconstruction. The traditional random measurement matrices can achieve good performance on the condition that the sampling rate is high enough, whereas the reconstructions are not satisfactory at low sampling rates. Compared with these random measurement matrices, the deterministic measurement matrices possess their own constraints, which lead to worse performance. Based on the generalized rotation (GR) matrix, two kinds of structured random matrices are proposed as the generalized binary rotation (GBR) matrix and the pseudo random generalized binary rotation (PGBR) matrix. Simulation results for two dimensional signals show that the two series of new matrices perform better than the traditional measurement matrices. The amount of time required by the traditional and the new approaches is about the same. Moreover, they can obtain more accurate reconstructions at low sampling rates.
查看全文  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《数据采集与处理》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892742      传真:025-84892742       E-mail:sjcj@nuaa.edu.cn

您是本站第894948位访问者 本站今日一共被访问168

技术支持:北京勤云科技发展有限公司