基于多尺度双分支双注意的KAN网络用于3D点云分类
DOI:
作者:
作者单位:

上海理工大学 光电信息与计算机工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(61603255);上海市晨光计划项目(18CG52)资助。


Multi-Scale Dual-Branch Dual-Attention-Based KAN Network for 3D Point Cloud Classification
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    尽管Transformers在三维点云处理中已取得显著进展,但同时高效且准确地学习有价值的低频和高频信息以改进应用仍然是一个挑战。本文提出了一种新的点云学习网络,称为多尺度双分支双注意力网络。首先,在点云的提取过程中,与在固定的尺度上寻找邻近点的提取方法相比,利用多尺度KNN方法,不仅保留了局部结构细节,还更有效地捕获了全局几何信息;其次,现有的方法大多侧重于局部空间信息,而忽略了全局空间的信息,从而导致信息的丢失。本文引入了双分支双注意力架构提取不同空间特征,提出了局部窗口注意力与全局通道内容注意力双注意力机制,分别提取网络的低频信息与高频信息;在此基础上,本文在分类头中引入GR-KAN层代替传统使用的MLP层,能够更灵活地处理非线性特征,使得网络对复杂的数据集更加敏感。大量实验表明,提出的模型在ModelNet40获得了93.8%的准确率,在ScanObjectNN数据集上获得了86.5%准确率,显示了其在三维点云处理中优越的性能和广阔的应用前景。

    Abstract:

    Although Transformers have made significant progress in 3D point cloud processing, efficiently and accurately learning valuable low-frequency and high-frequency information to improve applications remains a challenge. This paper proposes a novel point cloud learning network, termed Multi-Scale Dual-Branch Dual-Attention Network. First, during the extraction of point clouds, compared to methods that search for neighboring points at fixed scales, the use of a multi-scale KNN approach not only preserves local structural details but also more effectively captures global geometric information. Secondly, existing methods mostly focus on local spatial information while neglecting global spatial information, leading to information loss. This paper introduces a dual-branch dual-attention architecture to extract different spatial features, proposing a Local Window Attention and Global Channel Affinity Attention mechanism to respectively extract low-frequency and high-frequency information. On this basis, the GR-KAN layer is introduced in the classification head, replacing the traditionally used MLP layer, enabling more flexible handling of nonlinear features, thus making the network more sensitive to complex dataset. Extensive experiments demonstrate that the proposed model achieves 93.8% accuracy on the ModelNet40 dataset and 86.5% accuracy on the ScanObjectNN dataset, showcasing its superior performance and broad application prospects in 3D point cloud processing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2024-11-05
  • 录用日期:2025-01-10
  • 在线发布日期: