基于张量低秩学习的多视图子空间聚类方法
DOI:
作者:
作者单位:

南京邮电大学

作者简介:

通讯作者:

基金项目:

国家重点研发计划


Multi-view subspace clustering method based on tensor low-rank learning
Author:
Affiliation:

Nanjing University of Posts and Telecommunications

Fund Project:

The National Key Technologies R&D Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多视图聚类是一种机器学习技术,通过整合多源信息可以显著提升聚类性能。然而,现有方法在处理多视图数据时未能充分利用张量低秩表示与亲和度矩阵之间的内在相关性,同时在应对数据缺失、噪声和异常值时表现不佳。为解决这些问题,本文提出了一种基于张量低秩学习的多视图子空间聚类方法。该方法通过对数据样本施加低秩约束,深入挖掘数据点之间的高阶关联性,精确识别数据的子空间结构。同时,引入张量奇异值分解和加权张量核范数最小化方法,对亲和度矩阵进行优化,将聚类问题转化为一个凸优化问题求解,确保了模型的鲁棒性和效率。此外,方法在捕捉多视图数据复杂关联性方面表现出色,能够更准确地识别数据的潜在子空间结构。实验结果表明,本文方法在四类基准数据集上的性能优于现有方法,具有高的准确性和鲁棒性。

    Abstract:

    Multi-view clustering is a kind of machine learning technique, with the potential to enhance the efficacy of clustering by integrating information from multiple sources. However, existing methods encounter limitations when dealing with multiview data, due to an inability to fully utilise the intrinsic correlation between the tensor low-rank representation and the affinity matrix, as well as under-performance in dealing with missing data, noise and outliers.To address these limitations, this paper proposes a multi-view sub-space clustering method based on tensor low-rank learning. The proposed method explores higher-order correlations between data points more thoroughly and accurately identifies the structure of the data by imposing low-rank constraints on data samples. Additionally, tensor singular value decomposition and weighted tensor kernel paradigm minimization method are employed to optimize the affinity matrix, transforming the clustering problem into a convex optimization problem to solve. This ensures the robustness and efficiency of the model. Furthermore, the method has been shown to effectively capture the intricate correlations present in multi-view data, thereby facilitating the identification of potential sub-space structures with greater precision. Extensive experimental evaluations have been conducted, using four distinct benchmark datasets, to assess the performance of the proposed method. The experimental results show that our method outperforms existing methods on four benchmark datasets, with high accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-23
  • 最后修改日期:2025-01-11
  • 录用日期:2025-01-13
  • 在线发布日期: