基于卷积神经网络的多雷达协同抗欺骗式干扰方法
DOI:
作者:
作者单位:

南京邮电大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Multi-radar collaborative anti-spoofing jamming method based on convolutional neural network
Author:
Affiliation:

Nanjing University of Posts and Telecommunications

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在处理来自多站雷达系统收集的目标回波数据时,确保融合过程的高效性与稳定性,是信号处理领域亟待解决的核心技术难题。融合技术目前主要聚焦于利用回波的幅度相关性和空间定位等直观特征,但这些特征较为单一。然而,由于人工特征提取的全面性不足,这种方法容易导致信号资源的浪费、特征提取不全和判别算法不够通用等问题。为解决这一挑战,该文创新性地提出了一种融合多雷达协同检测与卷积神经网络的干扰识别策略,用于提升抗欺骗干扰的效能。深入挖掘回波数据中的未知信息,我们提取了多维且深度的特征差异,超越了单一的空间相关性,显著提升了干扰判别的准确性。

    Abstract:

    Ensuring the efficiency and stability of the fusion process when processing the target echo data collected from the multi-station radar system is a core technical problem to be solved urgently in the field of signal processing. At present, fusion technology mainly focuses on the use of intuitive features such as amplitude correlation and spatial localization of echoes, but these features are relatively simple. However, due to the lack of comprehensiveness of manual feature extraction, this method is easy to lead to problems such as waste of signal resources, incomplete feature extraction, and insufficient generalization of discriminant algorithms. In order to solve this challenge, this paper innovatively proposes a jamming recognition strategy that integrates multi-radar cooperative detection and convolutional neural network to improve the performance of anti-spoofing jamming. By digging deep into the unknown information in the echo data, we extract multi-dimensional and deep feature differences, which surpasses a single spatial correlation and significantly improves the accuracy of interference discrimination.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-15
  • 最后修改日期:2025-01-13
  • 录用日期:2025-01-24
  • 在线发布日期: