基于三级去畸变和分层降采样机制的F-LOAM改进算法
DOI:
作者:
作者单位:

南京邮电大学

作者简介:

通讯作者:

基金项目:


Improved F-LOAM algorithm based on three-stage de-distortion and hierarchical downsampling mechanism
Author:
Affiliation:

Nanjing University of Posts and Telecommunications

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统的F-LOAM(Fast LiDAR Odometry and Mapping)算法虽然对特征点进行了两级去畸变处理,但仅第一阶段对特征点进行去畸变,第二阶段去畸变主要用于建图,这导致了位姿估计的准确性不足。为了解决这一问题,本文提出了一种改进的三级去畸变机制,并结合基于体素化网格的分层降采样机制,以提高算法的实时性。经过改进的F-LOAM算法在KITTI数据集上的测试结果表现出色。三级去畸变机制和分层降采样策略不仅有效降低了计算负担,还确保了特征点的有效性和全局地图的精度。

    Abstract:

    The traditional F-LOAM (Fast LiDAR Odometry and Mapping) algorithm performs a two-stage de-distortion process on the feature points, but only the first stage de-distorts the feature points, and the second-stage de-distortion is mainly used for building the map, which leads to the lack of accuracy in the bit-position estimation. In order to solve this problem, this paper proposes an improved three-stage de-distortion mechanism combined with a voxelized grid-based hierarchical downsampling mechanism to improve the real-time performance of the algorithm. In addition by introducing a voxelized grid based hierarchical downsampling mechanism to improve the real-time performance of the algorithm. The improved F-LOAM algorithm shows excellent test results on the KITTI dataset. The three-stage de-distortion mechanism and the hierarchical downsampling strategy not only effectively reduce the computational burden, but also ensure the validity of feature points and the accuracy of the global map.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-08-22
  • 最后修改日期:2024-11-20
  • 录用日期:2025-01-10
  • 在线发布日期: