基于指针网络深度强化学习NOMA用户配对和功率分配方案
DOI:
作者:
作者单位:

陆军工程大学通信工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62101595,62271501),江苏省自然科学基金(BK20240200),江苏省前沿引领技术基础研究重大项目(BK20212001)


NOMA User pairing and Power Allocation Scheme of Deep Reinforcement Learning Base on Pointer Network
Author:
Affiliation:

College of Communications Engineering, Army Engineering University of PLA

Fund Project:

The National Natural Science Foundation of China (62101595), The Leading Edge Technology Basic Research Major Project of Jiangsu Province(BK20212001).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解决非正交多址接入(Non-Orthogonal Multiple Access, NOMA)在不完美串行干扰消除条件下的快速配对和功率分配问题。该文提出一种基于深度强化学习的NOMA用户配对和功率优化方案。首先,该文考虑多用户NOMA不完美连续干扰消除(Serial Interference Cancellation, SIC)的场景,以用户配对和用户发射功率分配因子为优化变量构建最大化系统可达通信速率的优化问题。分析了不完美SIC条件下用户使用NOMA配对的条件,并推出该条件下最大可达速率的用户功率分配。其次,将用户配对问题当作组合优化的问题,基于实时性的要求使用改进的指针网络设计了一种新型用户配对方案。仿真结果表明,该方案能够有效的提升NOMA系统的可达速率,达到了最优的穷搜算法的99.8%,并具有实时性和适应用户数量动态变化的优势。

    Abstract:

    In order to solve the fast pairing and power allocation problem of Non-Orthogonal Multiple Access (NOMA) under imperfect serial interference cancellation conditions. The paper proposes a deep reinforcement learning-based user pairing and power optimization scheme for NOMA. First, the paper considers the scenario of imperfect Serial Interference Cancellation (SIC) for multiuser NOMA, and constructs an optimization problem to maximize the system reachable communication rate with user pairing and user transmit power allocation factor as optimization variables. The condition of user pairing using NOMA under the imperfect SIC condition is analyzed, and the user power allocation for the maximum reachable rate under this condition is introduced. Second, the user pairing problem is treated as a combinatorial optimization problem, and a novel user pairing scheme is designed based on the real-time requirement using an improved pointer network. Simulation results show that this scheme can effectively improve the reachable rate of the NOMA system to 99.8% of the optimal exhaustive search algorithm, and has the advantages of real-time and adapting to the dynamic change of the number of users.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-08-21
  • 最后修改日期:2024-12-19
  • 录用日期:2025-02-24
  • 在线发布日期: