基于TCN的USRP调制信号识别算法
DOI:
作者:
作者单位:

中北大学

作者简介:

通讯作者:

基金项目:

山西省基础研究计划资助项目(20210302123062)


A TCN-Based Modulation Signal Recognition Algorithm for USRP
Author:
Affiliation:

North University of China

Fund Project:

Supported by Fundamental Research Program of Shanxi Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    自动调制识别(AMR)是通信系统中的关键信号处理技术,用于检测接收信号的调制方式。近年来,深度学习(DL)的快速发展使其成为调制识别中的重要研究方向。本文针对AMR中未充分利用原始信号时序信息,识别率低,提出基于频域降噪和时序卷积网络(TCN)的信号模式识别算法。实验中,使用标准数据集RML2016.10a,并引入频域去噪模块(FDDM)来有效降低环境噪声的影响。经过去噪处理后,信号的同相/正交(I/Q)分量转换为振幅/相位(A/P)分量。随后,对信号进行向量归一化处理,确保矩阵中每个点的取值范围在0到1之间,从而提高系统的稳定性。最后,将预处理后的信号输入TCN网络进行分类识别。实验结果表明,该算法在处理16QAM和64QAM等复杂调制方式时,性能明显优于其他对比模型。此外,通过通用软件无线电外设(USRP)采集BPSK、QPSK和16QAM信号,并使用实际采集的I/Q数据对该算法进行验证。实验显示,在添加高斯白噪声(AWGN)信道的情况下,该算法表现出良好的鲁棒性,具备一定的工程实用性。

    Abstract:

    Automatic Modulation Recognition (AMR) is a critical signal processing technology in communication systems, used to identify the modulation scheme of received signals. In recent years, the rapid development of Deep Learning (DL) has made it a significant research direction in modulation recognition. This paper addresses the issue of low recognition rates in AMR due to the insufficient utilization of the temporal information of raw signals, by proposing a signal pattern recognition algorithm based on frequency domain denoising and Temporal Convolutional Networks (TCN). In our experiments, we used the standard dataset RML2016.10a and introduced a Frequency Domain Denoising Module (FDDM) to effectively mitigate the impact of environmental noise. After denoising, the in-phase/quadrature (I/Q) components of the signal are converted into amplitude/phase (A/P) components. Subsequently, the signals are vector normalized to ensure that the values of each point in the matrix are within the range of 0 to 1, thereby enhancing system stability. Finally, the preprocessed signals are fed into the TCN network for classification and recognition. Experimental results demonstrate that the proposed algorithm significantly outperforms other comparative models when handling complex modulation schemes such as 16QAM and 64QAM. Additionally, the algorithm was validated using I/Q data collected from BPSK, QPSK, and 16QAM signals with a Universal Software Radio Peripheral (USRP). The experiments indicate that the algorithm exhibits good robustness under Additive White Gaussian Noise (AWGN) channel conditions, demonstrating considerable practical applicability in engineering.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-07-24
  • 最后修改日期:2025-01-24
  • 录用日期:2025-02-24
  • 在线发布日期: