非地面网络场景中基于全局超分去噪的信道估计
DOI:
作者:
作者单位:

重庆邮电大学 通信与信息工程学院

作者简介:

通讯作者:

基金项目:

重庆市自然科学基金(cstc2019jcyj- msxmX0079)


Channel estimation based on global super-resolution denoising in non-terrestrial network scenarios
Author:
Affiliation:

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications

Fund Project:

Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0079)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在非地面网络(Non-terrestrial network, NTN)场景中,为克服大多普勒频偏对通信的影响,提出一种基于全局信息提取,采用超分和去噪的信道估计方法(GSRDnNet)。此方法将最小二乘估计(Least Square, LS)算法得到的导频处信道估计矩阵视为低分辨率小尺寸图像作为神经网络的输入,输入数据经过GSRDnNet网络处理之后将得到更为精确的高分辨率图像,即时频资源块完整的信道响应矩阵。采用四种NTN-抽头延迟线(Tapped Delay Line, TDL)A,B,C,E信道模型进行仿真验证,仿真结果表明GSRDnNet相比于传统LS算法,均方误差(Mean Squared Error, MSE)性能提升3.37~8.83dB,相比于实际信道估计(Practical Channel Estimation, PCE)算法,MSE性能提升2.11~6.06dB,相比于需要预插值处理的SRCNN+DnCNN方法,MSE性能提升1.37~4.40dB。且较SRCNN+DnCNN ,GSRDnNet网络模型的输入仅考虑导频处的信道估计矩阵,因此不仅拥有更高的估计精度,在计算复杂度方面也降低约84%。

    Abstract:

    In Non-terrestrial network (NTN) scenario, in order to overcome the effect of large Doppler frequency offset on the communication, a channel estimation method based on global information extraction using super-resolution and denoising (GSRDnNet) is proposed. This method considers the channel estimation matrix at the pilot obtained by the Least Squares Estimation (LS) algorithm as a low-resolution small-size image as the input to the neural network. The input data is then processed by the GSRDnNet network to obtain a more accurate high-resolution image with a complete channel response matrix for the time-frequency resource block. Four NTN-tapped delay line (TDL) A,B,C and E channel models were used for simulation verification. Simulation results indicate that GSRDnNet improves mean squared error (MSE) performance by 3.37~8.83 dB compared to the traditional LS algorithm. Compared with the Practical Channel Estimation (PCE) algorithm, the performance of MSE is improved by 2.11~6.06dB, and compared with the SRCNN+DnCNN method, which requires pre-interpolation processing, the performance of MSE is improved by 1.37~4.40dB. And compared with SRCNN+DnCNN ,the input of GSRDnNet network model only considers the channel estimation matrix at the pilot, so it not only has higher estimation accuracy, but also reduces the computational complexity by about 84%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2025-01-21
  • 录用日期:2025-02-24
  • 在线发布日期: