基于深度学习的时间序列预测方法综述
DOI:
作者:
作者单位:

1.陆军工程大学;2.陆军装甲兵学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A Review of Time Series Forecasting Methods Based on Deep Learning
Author:
Affiliation:

1.Army Engineering University of PLA;2.Army Academy of Armored Forces

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    深度学习因能够更好地捕捉时间序列数据中的复杂关系和模式成为解决时间序列预测的有效方法。典型的做法是单独地学习这些任务,为每个任务训练一个单独的神经网络,在时间序列预测中取得了丰硕的成果。最近的多任务学习技术通过学习共享知识联合处理多个预测任务,在性能、计算和内存占用方面显示出了其优势。为了给研究者提供一个选择深度神经网络结构的参考,文章综述了以卷积神经网络、循环神经网络、注意力机制和图神经网络为代表的时间序列预测深度模型,包括数据集,模型特点和性能;然后又分析了深度多任务时间序列预测模型,按照参数共享方式和参数共享(交互)位置进行分类概述,并讨论了一些常见的多任务时间序列预测框架。最后,对深度时间序列预测面临的问题和挑战进行了总结,并对未来研究趋势进行了展望。

    Abstract:

    Deep learning has emerged as an effective approach for addressing time series prediction, owing to its ability to capture intricate relationships and patterns within time series data. A typical methodology involves training individual neural networks for each task, leading to significant advancements in time series prediction. Recent advancements in multi-task learning techniques have demonstrated advantages in performance, computation, and memory usage by leveraging shared knowledge to jointly address multiple prediction tasks. To serve as a reference for researchers in selecting deep neural network architectures, the article provides an overview of deep models for time series prediction, encompassing convolutional neural networks, recurrent neural networks, attention mechanisms, and graph neural networks, along with discussions on datasets, model characteristics, and performance metrics. Subsequently, it delves into an analysis of deep multi-task time series prediction models, categorizing them based on parameter sharing methods and locations of parameter sharing (interaction), and explores common frameworks for multi-task time series prediction. Finally, it concludes by summarizing the challenges and issues faced in deep time series prediction and offering insights into future research directions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-18
  • 最后修改日期:2024-11-23
  • 录用日期:2025-02-24
  • 在线发布日期: